Convergence in C([0, T]; L2(Ω)) of weak solutions to perturbed doubly degenerate parabolic equations

被引:14
作者
Droniou, Jerome [1 ]
Eymard, Robert [2 ]
Talbot, Kyle S. [1 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[2] Univ Paris Est, Lab Anal & Math Appl, UMR 8050, 5 Blvd Descartes, F-77454 Champs Sur Marne 2, Marne La Vallee, France
关键词
Uniform temporal convergence; Degenerate parabolic equation; Leray Lions operator; Maximal monotone operator; Richards equation; Stefan problem; POROUS-MEDIA; DIFFUSION; SPACES;
D O I
10.1016/j.jde.2016.02.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the behaviour of solutions to a class of nonlinear degenerate parabolic problems when the data are perturbed. The class includes the Richards equation, Stefan problem and the parabolic p-Laplace equation. We show that, up to a subsequence, weak solutions of the perturbed problem converge uniformly in-time to weak solutions of the original problem as the perturbed data approach the original data. We do not assume uniqueness or regularity. When uniqueness is known, our result demonstrates that the weak solution is uniformly temporally stable to perturbations of the data. Beginning with a proof of temporally-uniform, spatially-weak convergence, we strengthen the latter by relating the unknown to an underlying convex structure that emerges naturally from energy estimates. The double degeneracy - shown to be equivalent to a maximal monotone operator framework - is handled with techniques inspired by a classical monotonicity argument and a simple variant of the compensated compactness phenomenon. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:7821 / 7860
页数:40
相关论文
共 31 条
  • [1] ALT HW, 1983, MATH Z, V183, P311
  • [2] Well-posedness results for triply nonlinear degenerate parabolic equations
    Andreianov, B.
    Bendahmane, M.
    Karlsen, K. H.
    Ouaro, S.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (01) : 277 - 302
  • [3] Andreianov B., ARXIV150403891
  • [4] [Anonymous], 1986, Annali di Matematica Pura ed Applicata, DOI [DOI 10.1007/BF01762360.MR916688, DOI 10.1007/BF01762360]
  • [5] [Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
  • [6] AUBIN JP, 1963, CR HEBD ACAD SCI, V256, P5042
  • [7] THE CONTINUOUS DEPENDENCE ON PHI OF SOLUTIONS OF UT-DELTA-PHI(U)=0
    BENILAN, P
    CRANDALL, MG
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (02) : 161 - 177
  • [8] POSITIVITY VERSUS LOCALIZATION IN DEGENERATE DIFFUSION-EQUATIONS
    BERTSCH, M
    KERSNER, R
    PELETIER, LA
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1985, 9 (09) : 987 - 1008
  • [9] DEGENERATE DIFFUSION AND THE STEFAN PROBLEM
    BERTSCH, M
    DEMOTTONI, P
    PELETIER, LA
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (11) : 1311 - 1336
  • [10] Stefan problems with nonlinear diffusion and convection
    Blanchard, D
    Porretta, A
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 210 (02) : 383 - 428