Energy Conservation in Two-dimensional Incompressible Ideal Fluids

被引:33
作者
Cheskidov, A. [1 ]
Lopes Filho, M. C. [2 ]
Nussenzveig Lopes, H. J. [2 ]
Shvydkoy, R. [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, 322 Sci & Engn Off,M-C 249,851 S Morgan St, Chicago, IL 60607 USA
[2] Univ Fed Rio de Janeiro, Inst Matemat, Ilha Fundao, Cidade Univ,Caixa Postal 68530, BR-21941909 Rio De Janeiro, RJ, Brazil
关键词
EULER EQUATIONS; DISSIPATION; CONJECTURE; ONSAGER; FLOWS;
D O I
10.1007/s00220-016-2730-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This note addresses the issue of energy conservation for the 2D Euler system with an L (p) -control on vorticity. We provide a direct argument, based on a mollification in physical space, to show that the energy of a weak solution is conserved if . An example of a 2D field in the class for any , and (Onsager critical space, see Shvydkoy in Discr Contin Dyn Syst Ser S 3(3):473-496, 2010) is constructed with non-vanishing energy flux. This demonstrates sharpness of the kinematic argument, which does not differentiate between 2D and 3D, and requires Onsager's regularity control on the solution. Next, we show that for physically realizable solutions there is a mechanism preventing the anomalous dissipation in 2D that does not require such a control. Namely, we prove that any solution to the Euler equations produced via a vanishing viscosity limit from the Navier-Stokes equations, with , for p > 1, conserves energy.
引用
收藏
页码:129 / 143
页数:15
相关论文
共 21 条
[1]   LOSS OF SMOOTHNESS AND ENERGY CONSERVING ROUGH WEAK SOLUTIONS FOR THE 3d EULER EQUATIONS [J].
Bardos, Claude ;
Titi, Edriss S. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2010, 3 (02) :185-197
[2]  
Buckmaster T., COMMUN TUR IN PRESS
[3]   Anomalous dissipation for 1/5-Holder Euler flows [J].
Buckmaster, Tristan ;
De Lellis, Camillo ;
Isett, Philip ;
Szekelyhidi, Laszlo, Jr. .
ANNALS OF MATHEMATICS, 2015, 182 (01) :127-172
[4]   Energy conservation and Onsager's conjecture for the Euler equations [J].
Cheskidov, A. ;
Constantin, P. ;
Friedlander, S. ;
Shvydkoy, R. .
NONLINEARITY, 2008, 21 (06) :1233-1252
[5]   ILL-POSEDNESS OF THE BASIC EQUATIONS OF FLUID DYNAMICS IN BESOV SPACES [J].
Cheskidov, A. ;
Shvydkoy, R. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (03) :1059-1067
[6]   h-Principles for the Incompressible Euler Equations [J].
Choffrut, Antoine .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 210 (01) :133-163
[7]   ONSAGER CONJECTURE ON THE ENERGY-CONSERVATION FOR SOLUTIONS OF EULER EQUATION [J].
CONSTANTIN, P ;
TITI, ES ;
WEINAN, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) :207-209
[8]   Renormalized Solutions of the 2D Euler Equations [J].
Crippa, Gianluca ;
Spirito, Stefano .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 339 (01) :191-198
[9]   The Euler equations as a differential inclusion [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1417-1436
[10]   CONCENTRATIONS IN REGULARIZATIONS FOR 2-D INCOMPRESSIBLE-FLOW [J].
DIPERNA, RJ ;
MAJDA, AJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (03) :301-345