Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types

被引:532
作者
Dupuis, Celine [1 ]
Beaudoin, Georges [1 ]
机构
[1] Univ Laval, Dept Geol & Genie Geol, Quebec City, PQ G1V 0A6, Canada
关键词
Magnetite; Hematite; Mineral deposit; Electron microprobe; Mineral chemistry; Discriminant diagram; DETRITAL MAGNETITE; EXPLORATION; EVOLUTION; ORIGIN; RANGE; FLUID; AREA;
D O I
10.1007/s00126-011-0334-y
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Magnetite and hematite are common minerals in a range of mineral deposit types. These minerals form partial to complete solid solutions with magnetite, chromite, and spinel series, and ulvospinel as a result of divalent, trivalent, and tetravalent cation substitutions. Electron microprobe analyses of minor and trace elements in magnetite and hematite from a range of mineral deposit types (iron oxide-copper-gold (IOCG), Kiruna apatite-magnetite, banded iron formation (BIF), porphyry Cu, Fe-Cu skarn, Fe-Ti, V, Cr, Ni-Cu-PGE, Cu-Zn-Pb volcanogenic massive sulfide (VMS) and Archean Au-Cu porphyry and Opemiska Cu veins) show compositional differences that can be related to deposit types, and are used to construct discriminant diagrams that separate different styles of mineralization. The Ni + Cr vs. Si + Mg diagram can be used to isolate Ni-Cu-PGE, and Cr deposits from other deposit types. Similarly, the Al/(Zn + Ca) vs. Cu/(Si + Ca) diagram can be used to separate Cu-Zn-Pb VMS deposits from other deposit types. Samples plotting outside the Ni-Cu-PGE and Cu-Zn-Pb VMS fields are discriminated using the Ni/(Cr + Mn) vs. Ti + V or Ca + Al + Mn vs. Ti + V diagrams that discriminate for IOCG, Kiruna, porphyry Cu, BIF, skarn, Fe-Ti, and V deposits.
引用
收藏
页码:319 / 335
页数:17
相关论文
共 55 条
[1]  
Ancey M., 1978, Microanalyse microscopie electronique a balayage, P323
[2]   The range of spinel compositions in terrestrial mafic and ultramafic rocks [J].
Barnes, SJ ;
Roeder, PL .
JOURNAL OF PETROLOGY, 2001, 42 (12) :2279-2302
[3]   Epithermal Au-Ag-Cu, porphyry Cu-(Au-Mo) and Cu-Au-Ag-Zn-Pb skarn deposits of the Gangdese Arc, Tibet [J].
Beaudoin, G. ;
Hebert, R. ;
Wang, C. S. ;
Tang, J. .
MINERAL DEPOSIT RESEARCH: MEETING THE GLOBAL CHALLENGE, VOLS 1 AND 2, 2005, :1219-1222
[4]  
Beaudoin G, 2007, DIGGING DEEPER, VOLS 1 AND 2, P497
[5]   Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type [J].
Belousova, EA ;
Griffin, WL ;
O'Reilly, SY ;
Fisher, NI .
JOURNAL OF GEOCHEMICAL EXPLORATION, 2002, 76 (01) :45-69
[6]   IRON-TITANIUM OXIDE MINERALS AND SYNTHETIC EQUIVALENTS [J].
BUDDINGTON, AF ;
LINDSLEY, DH .
JOURNAL OF PETROLOGY, 1964, 5 (02) :310-357
[7]  
Carew M.J., 2004, THESIS JAMES COOK U
[8]  
Cimon J., 1973, Canadian Mining Journal, V94, P97
[9]  
DAVIDSON GJ, 1994, MINER DEPOSITA, V29, P208
[10]  
Deer W.A., 1997, ROCK FORMING MINERAL, VSecond