Quantile inference for heteroscedastic regression models

被引:4
作者
Chan, Ngai Hang [2 ]
Zhang, Rong-Mao [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
[2] Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Empirical likelihood; Heteroscedastic regression; Local linear estimate; Quantile regression; NONPARAMETRIC-ESTIMATION; EMPIRICAL LIKELIHOOD; STATISTICS; ARCH;
D O I
10.1016/j.jspi.2010.12.018
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the nonparametric heteroscedastic regression model Y = m(X)+sigma(X)epsilon, where m(.) is an unknown conditional mean function and sigma(.) is an unknown conditional scale function. In this paper, the limit distribution of the quantile estimate for the scale function sigma(X) is derived. Since the limit distribution depends on the unknown density of the errors, an empirical likelihood ratio statistic based on quantile estimator is proposed. This statistics is used to construct confidence intervals for the variance function. Under certain regularity conditions, it is shown that the quantile estimate of the scale function converges to a Brownian motion and the empirical likelihood ratio statistic converges to a chi-squared random variable. Simulation results demonstrate the superiority of the proposed method over the least squares procedure when the underlying errors have heavy tails. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2079 / 2090
页数:12
相关论文
共 24 条
[1]   Non-parametric estimation of the residual distribution [J].
Akritas, MG ;
Van Keilegom, I .
SCANDINAVIAN JOURNAL OF STATISTICS, 2001, 28 (03) :549-567
[2]   ANCOVA methods for heteroscedastic nonparametric regression models [J].
Akritas, MG ;
Van Keilegom, I .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) :220-232
[3]  
[Anonymous], 1988, Transformation and weighting in regressionNew
[4]   USING RESIDUALS ROBUSTLY .1. TESTS FOR HETEROSCEDASTICITY, NONLINEARITY [J].
BICKEL, PJ .
ANNALS OF STATISTICS, 1978, 6 (02) :266-291
[5]   DESCRIPTIVE STATISTICS FOR NONPARAMETRIC MODELS .3. DISPERSION [J].
BICKEL, PJ ;
LEHMANN, EL .
ANNALS OF STATISTICS, 1976, 4 (06) :1139-1158
[6]  
Bosq D., 1998, Nonparametric Statistics for Stochastic Processes. Estimation and Prediction, V2nd ed.
[7]  
Chan NH, 2006, STAT SINICA, V16, P15
[8]   Weighted least absolute deviations estimation for an AR(1) process with ARCH(1) errors [J].
Chan, NH ;
Peng, L .
BIOMETRIKA, 2005, 92 (02) :477-484
[9]   Empirical likelihood confidence intervals for local linear smoothers [J].
Chen, SX ;
Qin, YS .
BIOMETRIKA, 2000, 87 (04) :946-953
[10]  
Cont R., 2004, Financial Modelling with Jump Processes