Sparse kernel partial least squares regression

被引:15
|
作者
Momma, M [1 ]
Bennett, KP
机构
[1] Rensselaer Polytech Inst, Dept Decis Sci & Engn Syst, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
来源
关键词
D O I
10.1007/978-3-540-45167-9_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Partial Least Squares Regression (PLS) and its kernel version (KPLS) have become competitive regression approaches. KPLS performs as well as or better than support vector regression (SVR) for moderately-sized problems with the advantages of simple implementation, less training cost, and easier tuning of parameters. Unlike SVR, KPLS requires manipulation of the full kernel matrix and the resulting regression function requires the full training data. In this paper we rigorously derive a sparse KPLS algorithm. The underlying KPLS algorithm is modified to maintain sparsity in all steps of the algorithm. The resulting nu-KPLS algorithm explicitly models centering and bias rather than using kernel centering. An epsilon-insensitive loss function is used to produce sparse solutions in the dual space. The final regression function for the nu-KPLS algorithm only requires a relatively small set of support vectors.
引用
收藏
页码:216 / 230
页数:15
相关论文
共 50 条
  • [1] Kernel partial least-squares regression
    Bai Yifeng
    Xiao Han
    Yu Long
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 1231 - +
  • [2] Primal space sparse kernel partial least squares regression for large scale problems
    Hoegaerts, L
    Suykens, JAK
    Vandewalle, J
    De Moor, B
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 561 - 566
  • [3] A Novel Extension of Kernel Partial Least Squares Regression
    贾金明
    仲伟俊
    JournalofDonghuaUniversity(EnglishEdition), 2009, 26 (04) : 438 - 442
  • [4] A novel extension of kernel partial least squares regression
    Jia, Jin-Ming
    Zhong, Wei-Jun
    Journal of Donghua University (English Edition), 2009, 26 (04) : 438 - 442
  • [5] Kernel partial least squares regression in Reproducing Kernel Hilbert Space
    Rosipal, R
    Trejo, LJ
    JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (02) : 97 - 123
  • [6] Online Learning Algorithm for Sparse Kernel Partial Least Squares
    Qin, Zhiming
    Liu, Jizhen
    Zhang, Luanying
    Gu, Junjie
    ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 4, 2010, : 35 - 39
  • [7] Kernel Analysis of Partial Least Squares (PLS) Regression Models
    Shinzawa, Hideyuki
    Ritthiruangdej, Pitiporn
    Ozaki, Yukihiro
    APPLIED SPECTROSCOPY, 2011, 65 (05) : 549 - 556
  • [8] Stacked interval sparse partial least squares regression analysis
    Poerio, Dominic V.
    Brown, Steven D.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 166 : 49 - 60
  • [9] Sparse functional partial least squares regression with a locally sparse slope function
    Guan, Tianyu
    Lin, Zhenhua
    Groves, Kevin
    Cao, Jiguo
    STATISTICS AND COMPUTING, 2022, 32 (02)
  • [10] Sparse functional partial least squares regression with a locally sparse slope function
    Tianyu Guan
    Zhenhua Lin
    Kevin Groves
    Jiguo Cao
    Statistics and Computing, 2022, 32