Solid-state electrolytes for solid-state lithium-sulfur batteries: Comparisons, advances and prospects

被引:47
作者
Liang, Xin [1 ,2 ]
Wang, Lulu [2 ]
Wu, Xiaolong [2 ]
Feng, Xuyong [2 ]
Wu, Qiujie [2 ]
Sun, Yi [2 ]
Xiang, Hongfa [2 ]
Wang, Jiazhao [3 ]
机构
[1] Hefei Univ, Sch Energy Mat & Chem Engn, Hefei 230601, Anhui, Peoples R China
[2] Hefei Univ Technol, Engn Res Ctr High Performance Copper Alloy Mat & P, Sch Mat Sci & Engn, Minist Educ, Hefei 230009, Anhui, Peoples R China
[3] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2519, Australia
来源
JOURNAL OF ENERGY CHEMISTRY | 2022年 / 73卷
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Solid-statelithium-sulfurbatteries; Solid-stateelectrolyte; Polymer-basedelectrolyte; Ceramic-basedelectrolyte; GEL POLYMER ELECTROLYTE; LI-S BATTERIES; HIGH IONIC-CONDUCTIVITY; RECHARGEABLE LITHIUM; COMPOSITE ELECTROLYTES; CERAMIC ELECTROLYTE; CYCLE STABILITY; HIGH-CAPACITY; PVDF-HFP; PERFORMANCE;
D O I
10.1016/j.jechem.2022.06.035
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Compared with other secondary batteries, lithium-sulfur batteries (LSBs) have unparalleled advantages such as high energy density, low cost, etc. In liquid LSB systems, it is extremely easy to cause severe "shuttle effect" and safety issues. Hence, the development of solid-state LSBs (SSLSBs) has been attracting much more attention. As the most essential part of the SSLSBs, the solid-state electrolyte (SSE) has received significant attention from researchers. In this review, we concentrate on discussing the core of SSLSBs, which is the SSE. Moreover, we also highlight the differences in the properties of the different SSEs, which are polymer-based electrolytes and ceramic-based electrolytes. In addition, the challenges and advances in different types of SSEs are also compared and described systematically. Furthermore, the prospects for new SSE systems and the design of effective SSE structures to achieve high-performance SSLSBs are also discussed. Thus, this review is expected to give readers a comprehensive and systematic understanding of SSEs for SSLSBs.(c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:370 / 386
页数:17
相关论文
共 50 条
  • [21] A review of composite polymer electrolytes for solid-state lithium-sulfur batteries: Synthesis methods, optimal design, and critical challenges
    Li, Suo
    Li, Libo
    Yang, Hang
    Zhao, Yangmingyue
    Shan, Yuhang
    [J]. CHEMICAL ENGINEERING JOURNAL, 2024, 484
  • [22] Recent advances in the interface design of solid-state electrolytes for solid-state energy storage devices
    Xu, XiaoLong
    Hui, Kwan San
    Hui, Kwun Nam
    Wang, Hao
    Liu, Jingbing
    [J]. MATERIALS HORIZONS, 2020, 7 (05) : 1246 - 1278
  • [23] Solid-State Electrolytes for Lithium-Air Batteries
    Qi, Xianhai
    Liu, Dapeng
    Yu, Haohan
    Fu, Zerui
    Zhang, Yu
    [J]. BATTERIES & SUPERCAPS, 2024,
  • [24] Solid-state lithium batteries: Safety and prospects
    Guo, Yong
    Wu, Shichao
    He, Yan-Bing
    Kang, Feiyu
    Chen, Liquan
    Li, Hong
    Yang, Quan-Hong
    [J]. ESCIENCE, 2022, 2 (02): : 138 - 163
  • [25] Elucidating Interfacial Phenomena between Solid-State Electrolytes and the Sulfur-Cathode of Lithium-Sulfur Batteries
    Camacho-Forero, Luis E.
    Balbuena, Perla B.
    [J]. CHEMISTRY OF MATERIALS, 2020, 32 (01) : 360 - 373
  • [26] All Solid-State Lithium Batteries Assembled with Hybrid Solid Electrolytes
    Jung, Yun-Chae
    Lee, Sang-Min
    Choi, Jeong-Hee
    Jang, Seung Soon
    Kim, Dong-Won
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (04) : A704 - A710
  • [27] Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives
    Quartarone, Eliana
    Mustarelli, Piercarlo
    [J]. CHEMICAL SOCIETY REVIEWS, 2011, 40 (05) : 2525 - 2540
  • [28] Recent advances in cathodes for all-solid-state lithium-sulfur batteries
    Yang, Shengbo
    Wang, Bo
    Lv, Qiang
    Zhang, Nan
    Zhang, Zekun
    Jing, Yutong
    Li, Jinbo
    Chen, Rui
    Wu, Bochen
    Xu, Pengfei
    Wang, Dianlong
    [J]. CHINESE CHEMICAL LETTERS, 2023, 34 (07)
  • [29] Advances in Ordered Architecture Design of Composite Solid Electrolytes for Solid-State Lithium Batteries
    Sun, Jichang
    Liu, Chuanbang
    Liu, Huaiyin
    Li, Junwei
    Zheng, Penglun
    Zheng, Yun
    Liu, Zhihong
    [J]. CHEMICAL RECORD, 2023, 23 (06)
  • [30] Recent advances of composite electrolytes for solid-state Li batteries
    Xu, Laiqiang
    Li, Jiayang
    Shuai, Honglei
    Luo, Zheng
    Wang, Baowei
    Fang, Susu
    Zou, Guoqiang
    Hou, Hongshuai
    Peng, Hongjian
    Ji, Xiaobo
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2022, 67 : 524 - 548