Early-phenotype CAR-T cells for the treatment of pediatric cancers

被引:18
作者
Meyran, D. [1 ,2 ,3 ]
Terry, R. L. [4 ,5 ]
Zhu, J. J. [1 ,3 ]
Haber, M. [4 ,5 ]
Ziegler, D. S. [4 ,5 ,6 ]
Ekert, P. G. [1 ,4 ,5 ,7 ]
Trapani, J. A. [1 ,3 ]
Darcy, P. K. [1 ,3 ]
Neeson, P. J. [1 ,3 ]
机构
[1] Peter MacCallum Canc Ctr, Canc Immunol Program, 305 Grattan St, Melbourne, Vic 3000, Australia
[2] Univ Paris, Inst Rech St Louis, INSERM, U976,HIPI Unit, Paris, France
[3] Univ Melbourne, Sir Peter MacCallum Dept Oncol, Melbourne, Vic, Australia
[4] UNSW Sydney, Lowy Canc Res Ctr, Childrens Canc Inst, Sydney, NSW, Australia
[5] UNSW Sydney, Sch Womens & Childrens Hlth, Sydney, NSW, Australia
[6] Sydney Childrens Hosp, Kids Canc Ctr, Randwick, NSW, Australia
[7] Royal Childrens Hosp, Murdoch Childrens Res Inst, Parkville, Vic, Australia
基金
英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
pediatric cancer; chimeric antigen receptor; T-cell memory; MEMORY STEM-CELLS; B-CELL; ANTITUMOR-ACTIVITY; CD8(+); DIFFERENTIATION; GENERATION; EXPANSION; EFFECTOR; THERAPY; IL-15;
D O I
10.1016/j.annonc.2021.07.018
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Chimeric antigen receptor (CAR)-T-cell therapy is a promising approach for the treatment of childhood cancers, particularly high-risk tumors that fail to respond to standard therapies. CAR-T cells have been highly successful in treating some types of hematological malignancies. However, CAR-T cells targeting solid cancers have had limited success so far for multiple reasons, including their poor long-term persistence and proliferation. Evidence is emerging to show that maintaining CAR-T cells in an early, less-differentiated state in vitro results in superior persistence, proliferation, and antitumor effects in vivo. Children are ideal candidates for receiving less-differentiated CAR-T cells, because their peripheral T-cell pool primarily comprises naive cells that could readily be harvested in large numbers to generate early-phenotype CAR-T cells. Although several studies have reported different approaches to successfully generate early CAR-T cells, there are only a few clinical trials testing these in adult patients. No trials are currently testing early CAR-T cells in children. Here, we summarize the different strategies used to maintain CAR-T cells in an early phenotypic stage and present evidence suggesting that this approach may be particularly relevant to treating childhood cancers.
引用
收藏
页码:1366 / 1380
页数:15
相关论文
共 103 条
[71]   Cutting edge: Persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy [J].
Robbins, PF ;
Dudley, ME ;
Wunderlich, J ;
El-Gamil, M ;
Li, YF ;
Zhou, JH ;
Huang, JP ;
Powell, DJ ;
Rosenberg, SA .
JOURNAL OF IMMUNOLOGY, 2004, 173 (12) :7125-7130
[72]   Engineering T Cells with Customized Therapeutic Response Programs Using Synthetic Notch Receptors [J].
Roybal, Kole T. ;
Williams, Jasper Z. ;
Morsut, Leonardo ;
Rupp, Levi J. ;
Kolinko, Isabel ;
Choe, Joseph H. ;
Walker, Whitney J. ;
McNally, Krista A. ;
Lim, Wendell A. .
CELL, 2016, 167 (02) :419-+
[73]   Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies [J].
Sabatino, Marianna ;
Hu, Jinhui ;
Sommariva, Michele ;
Gautam, Sanjivan ;
Fellowes, Vicki ;
Hocker, James D. ;
Dougherty, Sean ;
Qin, Haiying ;
Klebanoff, Christopher A. ;
Fry, Terry J. ;
Gress, Ronald E. ;
Kochenderfer, James N. ;
Stroncek, David F. ;
Ji, Yun ;
Gattinoni, Luca .
BLOOD, 2016, 128 (04) :519-528
[74]   CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients [J].
Savoldo, Barbara ;
Ramos, Carlos Almeida ;
Liu, Enli ;
Mims, Martha P. ;
Keating, Michael J. ;
Carrum, George ;
Kamble, Rammurti T. ;
Bollard, Catherine M. ;
Gee, Adrian P. ;
Mei, Zhuyong ;
Liu, Hao ;
Grilley, Bambi ;
Rooney, Cliona M. ;
Heslop, Helen E. ;
Brenner, Malcolm K. ;
Dotti, Gianpietro .
JOURNAL OF CLINICAL INVESTIGATION, 2011, 121 (05) :1822-1826
[75]   Generation of Induced Pluripotent Stem Cells from Human Terminally Differentiated Circulating T Cells [J].
Seki, Tomohisa ;
Yuasa, Shinsuke ;
Oda, Mayumi ;
Egashira, Toru ;
Yae, Kojiro ;
Kusumoto, Dai ;
Nakata, Hikari ;
Tohyama, Shugo ;
Hashimoto, Hisayuki ;
Kodaira, Masaki ;
Okada, Yohei ;
Seimiya, Hiroyuki ;
Fusaki, Noemi ;
Hasegawa, Mamoru ;
Fukuda, Keiichi .
CELL STEM CELL, 2010, 7 (01) :11-14
[76]   Lymphocyte subsets in healthy children from birth through 18 years of age: The pediatric AIDS clinical trials group P1009 study [J].
Shearer, WT ;
Rosenblatt, HM ;
Gelman, RS ;
Oymopito, R ;
Plaeger, S ;
Stiehm, ER ;
Wara, DW ;
Douglas, SD ;
Luzuriaga, K ;
McFarland, EJ ;
Yogev, R ;
Rathore, MH ;
Levy, W ;
Graham, BL ;
Spector, SA .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2003, 112 (05) :973-980
[77]   Evolution of the immune system in humans from infancy to old age [J].
Simon, A. Katharina ;
Hollander, Georg A. ;
McMichael, Andrew .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2015, 282 (1821)
[78]   Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo [J].
Sommermeyer, D. ;
Hudecek, M. ;
Kosasih, P. L. ;
Gogishvili, T. ;
Maloney, D. G. ;
Turtle, C. J. ;
Riddell, S. R. .
LEUKEMIA, 2016, 30 (02) :492-500
[79]   Reprogramming of Human Peripheral Blood Cells to Induced Pluripotent Stem Cells [J].
Staerk, Judith ;
Dawlaty, Meelad M. ;
Gao, Qing ;
Maetzel, Dorothea ;
Hanna, Jacob ;
Sommer, Cesar A. ;
Mostoslavsky, Gustavo ;
Jaenisch, Rudolf .
CELL STEM CELL, 2010, 7 (01) :20-24
[80]  
Steinmann G G, 1986, Curr Top Pathol, V75, P43