Early-phenotype CAR-T cells for the treatment of pediatric cancers

被引:18
作者
Meyran, D. [1 ,2 ,3 ]
Terry, R. L. [4 ,5 ]
Zhu, J. J. [1 ,3 ]
Haber, M. [4 ,5 ]
Ziegler, D. S. [4 ,5 ,6 ]
Ekert, P. G. [1 ,4 ,5 ,7 ]
Trapani, J. A. [1 ,3 ]
Darcy, P. K. [1 ,3 ]
Neeson, P. J. [1 ,3 ]
机构
[1] Peter MacCallum Canc Ctr, Canc Immunol Program, 305 Grattan St, Melbourne, Vic 3000, Australia
[2] Univ Paris, Inst Rech St Louis, INSERM, U976,HIPI Unit, Paris, France
[3] Univ Melbourne, Sir Peter MacCallum Dept Oncol, Melbourne, Vic, Australia
[4] UNSW Sydney, Lowy Canc Res Ctr, Childrens Canc Inst, Sydney, NSW, Australia
[5] UNSW Sydney, Sch Womens & Childrens Hlth, Sydney, NSW, Australia
[6] Sydney Childrens Hosp, Kids Canc Ctr, Randwick, NSW, Australia
[7] Royal Childrens Hosp, Murdoch Childrens Res Inst, Parkville, Vic, Australia
基金
英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
pediatric cancer; chimeric antigen receptor; T-cell memory; MEMORY STEM-CELLS; B-CELL; ANTITUMOR-ACTIVITY; CD8(+); DIFFERENTIATION; GENERATION; EXPANSION; EFFECTOR; THERAPY; IL-15;
D O I
10.1016/j.annonc.2021.07.018
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Chimeric antigen receptor (CAR)-T-cell therapy is a promising approach for the treatment of childhood cancers, particularly high-risk tumors that fail to respond to standard therapies. CAR-T cells have been highly successful in treating some types of hematological malignancies. However, CAR-T cells targeting solid cancers have had limited success so far for multiple reasons, including their poor long-term persistence and proliferation. Evidence is emerging to show that maintaining CAR-T cells in an early, less-differentiated state in vitro results in superior persistence, proliferation, and antitumor effects in vivo. Children are ideal candidates for receiving less-differentiated CAR-T cells, because their peripheral T-cell pool primarily comprises naive cells that could readily be harvested in large numbers to generate early-phenotype CAR-T cells. Although several studies have reported different approaches to successfully generate early CAR-T cells, there are only a few clinical trials testing these in adult patients. No trials are currently testing early CAR-T cells in children. Here, we summarize the different strategies used to maintain CAR-T cells in an early phenotypic stage and present evidence suggesting that this approach may be particularly relevant to treating childhood cancers.
引用
收藏
页码:1366 / 1380
页数:15
相关论文
共 103 条
[1]   Strategies to Address Chimeric Antigen Receptor Tonic Signaling [J].
Ajina, Adam ;
Maher, John .
MOLECULAR CANCER THERAPEUTICS, 2018, 17 (09) :1795-1815
[2]   IL15 Enhances CAR-T Cell Antitumor Activity by Reducing mTORC1 Activity and Preserving Their Stem Cell Memory Phenotype [J].
Alizadeh, Darya ;
Wong, Robyn A. ;
Yang, Xin ;
Wang, Dongrui ;
Pecoraro, Joseph R. ;
Kuo, Cheng-Fu ;
Aguilar, Brenda ;
Qi, Yue ;
Ann, David K. ;
Starr, Renate ;
Urak, Ryan ;
Wang, Xiuli ;
Forman, Stephen J. ;
Brown, Christine E. .
CANCER IMMUNOLOGY RESEARCH, 2019, 7 (05) :759-772
[3]   mTOR regulates memory CD8 T-cell differentiation [J].
Araki, Koichi ;
Turner, Alexandra P. ;
Shaffer, Virginia Oliva ;
Gangappa, Shivaprakash ;
Keller, Susanne A. ;
Bachmann, Martin F. ;
Larsen, Christian P. ;
Ahmed, Rafi .
NATURE, 2009, 460 (7251) :108-U124
[4]   Glypican-3-Specific CAR T Cells Coexpressing IL15 and IL21 Have Superior Expansion and Antitumor Activity against Hepatocellular Carcinoma [J].
Batra, Sai Arun ;
Rathi, Purva ;
Guo, Linjie ;
Courtney, Amy N. ;
Fleurence, Julien ;
Balzeau, Julien ;
Shaik, Rahamthulla S. ;
Nguyen, Thao P. ;
Wu, Meng-Fen ;
Bulsara, Shaun ;
Mamonkin, Maksim ;
Metelitsa, Leonid S. ;
Heczey, Andras .
CANCER IMMUNOLOGY RESEARCH, 2020, 8 (03) :309-320
[5]   The tumorigenicity of human embryonic and induced pluripotent stem cells [J].
Ben-David, Uri ;
Benvenisty, Nissim .
NATURE REVIEWS CANCER, 2011, 11 (04) :268-277
[6]   In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells [J].
Biasco, Luca ;
Scala, Serena ;
Ricci, Luca Basso ;
Dionisio, Francesca ;
Baricordi, Cristina ;
Calabria, Andrea ;
Giannelli, Stefania ;
Cieri, Nicoletta ;
Barzaghi, Federica ;
Pajno, Roberta ;
Al-Mousa, Hamoud ;
Scarselli, Alessia ;
Cancrini, Caterina ;
Bordignon, Claudio ;
Roncarolo, Maria Grazia ;
Montini, Eugenio ;
Bonini, Chiara ;
Aiuti, Alessandro .
SCIENCE TRANSLATIONAL MEDICINE, 2015, 7 (273) :273ra13
[7]   Understanding the tumor immune microenvironment (TIME) for effective therapy [J].
Binnewies, Mikhail ;
Roberts, Edward W. ;
Kersten, Kelly ;
Chan, Vincent ;
Fearon, Douglas F. ;
Merad, Miriam ;
Coussens, Lisa M. ;
Gabrilovich, Dmitry I. ;
Ostrand-Rosenberg, Suzanne ;
Hedrick, Catherine C. ;
Vonderheide, Robert H. ;
Pittet, Mikael J. ;
Jain, Rakesh K. ;
Zou, Weiping ;
Howcroft, T. Kevin ;
Woodhouse, Elisa C. ;
Weinberg, Robert A. ;
Krummel, Matthew F. .
NATURE MEDICINE, 2018, 24 (05) :541-550
[8]   Induction of a central memory and stem cell memory phenotype in functionally active CD4+ and CD8+ CAR T cells produced in an automated good manufacturing practice system for the treatment of CD19+ acute lymphoblastic leukemia [J].
Blaeschke, Franziska ;
Stenger, Dana ;
Kaeuferle, Theresa ;
Willier, Semjon ;
Lotfi, Ramin ;
Kaiser, Andrew Didier ;
Assenmacher, Mario ;
Doering, Michaela ;
Feucht, Judith ;
Feuchtinger, Tobias .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2018, 67 (07) :1053-1066
[9]   The long road to the first FDA-approved gene therapy: chimeric antigen receptor T cells targeting CD19 [J].
Braendstrup, Peter ;
Levine, Bruce L. ;
Ruella, Marco .
CYTOTHERAPY, 2020, 22 (02) :57-69
[10]   Optimization of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma [J].
Brown, Christine E. ;
Aguilar, Brenda ;
Starr, Renate ;
Yang, Xin ;
Chang, Wen-Chung ;
Weng, Lihong ;
Chang, Brenda ;
Sarkissian, Aniee ;
Brito, Alfonso ;
Sanchez, James F. ;
Ostberg, Julie R. ;
D'Apuzzo, Massimo ;
Badie, Behnam ;
Barish, Michael E. ;
Forman, Stephen J. .
MOLECULAR THERAPY, 2018, 26 (01) :31-44