Formation of imperfect crystals in poly(ε-caprolactone) at high melt-supercooling

被引:6
作者
Jariyavidyanont, Katalee [1 ]
Zhang, Rui [1 ]
Yu, Qiang [2 ]
Janke, Andreas [3 ]
Thurn-Albrecht, Thomas [2 ]
Schick, Christoph [4 ,5 ]
Androsch, Rene [1 ]
机构
[1] Martin Luther Univ Halle Wittenberg, Interdisciplinary Ctr Transfer Oriented Res Nat Sc, D-06099 Halle An Der Saale, Germany
[2] Martin Luther Univ Halle Wittenberg, Inst Phys, D-06099 Halle An Der Saale, Germany
[3] Leibniz Inst Polymerforsch Dresden E V, Hohe Str 6, D-01069 Dresden, Germany
[4] Univ Rostock, Inst Phys, Albert Einstein Str 23-24, D-18059 Rostock, Germany
[5] Univ Rostock, Competence Ctr CALOR, Albert Einstein Str 23-24, D-18059 Rostock, Germany
关键词
Poly(?-caprolactone); Crystallization; Crystal morphology; Fast scanning chip calorimetry; CRYSTALLIZATION; MORPHOLOGY; BEHAVIOR;
D O I
10.1016/j.matlet.2022.132704
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Poly(epsilon-caprolactone) (PCL) was crystallized at high melt-supercooling in a fast scanning chip calorimeter, with this instrumentation needed to reach the temperature range of homogenous crystal nucleation by fast cooling the melt. Subsequently, after slow heating the polymer to ambient temperature, the semicrystalline morphology and X-ray structure were evaluated. Nucleation and crystallization at low temperature yields a featureless structure at the micrometer-length scale, indicating non-spherulitic crystal growth. Images of the nanometer-scale structure suggest presence of irregular grown short lamellae or particle-like domains, and the absence of sharp peaks in the X-ray scattering pattern indicates formation of small or defective crystals. In conclusion, due to the high nuclei density, crystallization of PCL near the glass transition leads to formation of imperfect crystals, and slow heating to ambient temperature does not allow their reorganization to yield long-range orthorhombic order, typically observed on crystallization at low melt-supercooling.
引用
收藏
页数:4
相关论文
共 21 条
[11]   Review spherulites: A personal perspective [J].
Magill, JH .
JOURNAL OF MATERIALS SCIENCE, 2001, 36 (13) :3143-3164
[12]   Morphology of cold-crystallized polyamide 6 [J].
Mileva, Daniela ;
Kolesov, Igor ;
Androsch, Rene .
COLLOID AND POLYMER SCIENCE, 2012, 290 (10) :971-978
[13]  
Mochizuki M, 1997, POLYM ADVAN TECHNOL, V8, P203
[14]  
Mohamed Rabiatul Manisah, 2016, Advanced Materials Research, V1134, P249, DOI 10.4028/www.scientific.net/AMR.1134.249
[15]  
NATTA G, 1960, MAKROMOLEKUL CHEM, V35, P94
[16]   CRYSTALLIZATION STUDIES OF POLY(EPSILON-CAPROLACTONE) .1. MORPHOLOGY AND KINETICS [J].
PHILLIPS, PJ ;
RENSCH, GJ ;
TAYLOR, KD .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1987, 25 (08) :1725-1740
[17]   The effect of intracrystalline chain dynamics on melting and reorganization during heating in semicrystalline polymers [J].
Schulz, Martha ;
Seidlitz, Anne ;
Petzold, Albrecht ;
Thurn-Albrecht, Thomas .
POLYMER, 2020, 196
[18]   Mesophase in melt-spun poly(ε-caprolactone) filaments: Structure-mechanical property relationship [J].
Selli, F. ;
Erdogan, U. H. ;
Hufenus, R. ;
Perret, E. .
POLYMER, 2020, 206
[19]   Kinetics of nucleation and crystallization in poly(ε-caprolactone) (PCL) [J].
Zhuravlev, Evgeny ;
Schmelzer, Juern W. P. ;
Wunderlich, Bernhard ;
Schick, Christoph .
POLYMER, 2011, 52 (09) :1983-1997
[20]   Crystal morphology of rapidly cooled isotactic polypropylene: A comparative study by TEM and AFM [J].
Zia, Qamer ;
Androsch, Rene ;
Radusch, Hans-Joachim ;
Ingolic, Elisabeth .
POLYMER BULLETIN, 2008, 60 (06) :791-798