Entanglement Entropy of Electromagnetic Edge Modes

被引:146
作者
Donnelly, William [1 ]
Wall, Aron C. [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
关键词
BLACK-HOLE ENTROPY; RENORMALIZATION; INTEGRALS; GEOMETRY; ORIGIN; FIELDS; TERMS;
D O I
10.1103/PhysRevLett.114.111603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The vacuum entanglement entropy of Maxwell theory, when evaluated by standard methods, contains an unexpected term with no known statistical interpretation. We resolve this two-decades old puzzle by showing that this term is the entanglement entropy of edge modes: classical solutions determined by the electric field normal to the entangling surface. We explain how the heat kernel regularization applied to this term leads to the negative divergent expression found by Kabat. This calculation also resolves a recent puzzle concerning the logarithmic divergences of gauge fields in 3 + 1 dimensions.
引用
收藏
页数:6
相关论文
共 81 条
[1]   Disk entanglement entropy for a Maxwell field [J].
Agon, Cesar A. ;
Headrick, Matthew ;
Jafferis, Daniel L. ;
Kasko, Skyler .
PHYSICAL REVIEW D, 2014, 89 (02)
[2]  
[Anonymous], ARXIVGRQC9404039
[3]  
[Anonymous], ARXIV14091231
[4]  
[Anonymous], ARXIV14052933
[5]   Edge states and entanglement entropy [J].
Balachandran, AP ;
Momen, A ;
Chandar, L .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (03) :625-641
[6]   Non-minimal coupling, boundary terms and renormalization of the Einstein-Hilbert action and black hole entropy [J].
Barvinsky, AO ;
Solodukhin, SN .
NUCLEAR PHYSICS B, 1996, 479 (1-2) :305-318
[7]   On the architecture of spacetime geometry [J].
Bianchi, Eugenio ;
Myers, Robert C. .
CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (21)
[8]   DUALITY CONDITION FOR A HERMITIAN SCALAR FIELD [J].
BISOGNANO, JJ ;
WICHMANN, EH .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (04) :985-1007
[9]   Localization of Negative Energy and the Bekenstein Bound [J].
Blanco, David D. ;
Casini, Horacio .
PHYSICAL REVIEW LETTERS, 2013, 111 (22)
[10]   QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES [J].
BOMBELLI, L ;
KOUL, RK ;
LEE, J ;
SORKIN, RD .
PHYSICAL REVIEW D, 1986, 34 (02) :373-383