Entanglement Entropy of Electromagnetic Edge Modes

被引:135
作者
Donnelly, William [1 ]
Wall, Aron C. [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
关键词
BLACK-HOLE ENTROPY; RENORMALIZATION; INTEGRALS; GEOMETRY; ORIGIN; FIELDS; TERMS;
D O I
10.1103/PhysRevLett.114.111603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The vacuum entanglement entropy of Maxwell theory, when evaluated by standard methods, contains an unexpected term with no known statistical interpretation. We resolve this two-decades old puzzle by showing that this term is the entanglement entropy of edge modes: classical solutions determined by the electric field normal to the entangling surface. We explain how the heat kernel regularization applied to this term leads to the negative divergent expression found by Kabat. This calculation also resolves a recent puzzle concerning the logarithmic divergences of gauge fields in 3 + 1 dimensions.
引用
收藏
页数:6
相关论文
共 81 条
  • [1] Disk entanglement entropy for a Maxwell field
    Agon, Cesar A.
    Headrick, Matthew
    Jafferis, Daniel L.
    Kasko, Skyler
    [J]. PHYSICAL REVIEW D, 2014, 89 (02)
  • [2] [Anonymous], ARXIVGRQC9404039
  • [3] [Anonymous], ARXIV14091231
  • [4] [Anonymous], ARXIV14052933
  • [5] Edge states and entanglement entropy
    Balachandran, AP
    Momen, A
    Chandar, L
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (03): : 625 - 641
  • [6] Non-minimal coupling, boundary terms and renormalization of the Einstein-Hilbert action and black hole entropy
    Barvinsky, AO
    Solodukhin, SN
    [J]. NUCLEAR PHYSICS B, 1996, 479 (1-2) : 305 - 318
  • [7] On the architecture of spacetime geometry
    Bianchi, Eugenio
    Myers, Robert C.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (21)
  • [8] DUALITY CONDITION FOR A HERMITIAN SCALAR FIELD
    BISOGNANO, JJ
    WICHMANN, EH
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (04) : 985 - 1007
  • [9] Localization of Negative Energy and the Bekenstein Bound
    Blanco, David D.
    Casini, Horacio
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (22)
  • [10] QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES
    BOMBELLI, L
    KOUL, RK
    LEE, J
    SORKIN, RD
    [J]. PHYSICAL REVIEW D, 1986, 34 (02): : 373 - 383