Blow-up for degenerate nonlinear parabolic problem

被引:1
作者
Chan, W. Y. [1 ]
机构
[1] Texas A&M Univ, Dept Math, Texarkana, TX 75503 USA
来源
AIMS MATHEMATICS | 2019年 / 4卷 / 05期
关键词
blow-up; degenerate nonlinear parabolic problem; global existence; GRAVITY CURRENTS;
D O I
10.3934/math.2019.5.1488
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the existence, uniqueness, and finite time blow-up of the solution to the degenerate nonlinear parabolic problem: u(tau) = (xi(r)u(m)u(xi))/xi(r) +u(p) or 0 < xi < a, 0 < tau < Gamma, u (xi, 0) = u(0) (xi) for 0 <= xi <= a, and u (0, tau) = 0 = u (a, tau) for 0 < tau < Gamma, where u(0) (xi) is a positive function and u(0) (0) = 0 = u(0) (a). In addition, we prove that u exists globally if a is small through constructing a global-exist upper solution, and u(tau) blows up in a finite time.
引用
收藏
页码:1488 / 1498
页数:11
相关论文
共 50 条
[31]   Blow-up for a degenerate and singular parabolic equation with a nonlocal source [J].
Sukwong, Nitithorn ;
Sawangtong, Panumart ;
Koonprasert, Sanoe ;
Sawangtong, Wannika .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
[32]   Pointwise bounds and blow-up for nonlinear fractional parabolic inequalities [J].
Taliaferro, Steven D. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 133 :287-328
[33]   Blow-up of solutions to a degenerate parabolic equation not in divergence form [J].
Winkler, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 192 (02) :445-474
[34]   Numerical analysis of radially nonsymmetric blow-up solutions of a nonlinear parabolic problem [J].
Dimova, S ;
Kaschiev, M ;
Koleva, M ;
Vasileva, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 97 (1-2) :81-97
[35]   Global existence and blow-up of solutions to a nonlocal quasilinear degenerate parabolic system [J].
Li, Fucai .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (05) :1387-1402
[36]   Global existence and blow-up for degenerate and singular parabolic system with localized sources [J].
Li, Juan ;
Cui, Zejian ;
Mu, Chunlai .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 199 (01) :292-300
[37]   Blow-up for a degenerate diffusion problem not in divergence form [J].
Ferreira, Raul ;
de Pablo, Arturo ;
Rossi, Julio D. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (03) :955-974
[38]   Blow-up analysis of solutions for weakly coupled degenerate parabolic systems with nonlinear boundary conditions [J].
Ding, Juntang .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 61
[39]   Blow-up sets and Fujita type curves for a degenerate parabolic system with nonlinear boundary conditions [J].
Quirós, F ;
Rossi, JD .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 (01) :629-654
[40]   BLOW-UP AND LIFE SPAN ESTIMATES FOR A CLASS OF NONLINEAR DEGENERATE PARABOLIC SYSTEM WITH TIME-DEPENDENT COEFFICIENTS [J].
夏安银 ;
樊明书 ;
李珊 .
Acta Mathematica Scientia, 2017, 37 (04) :974-984