Blow-up for degenerate nonlinear parabolic problem

被引:1
|
作者
Chan, W. Y. [1 ]
机构
[1] Texas A&M Univ, Dept Math, Texarkana, TX 75503 USA
来源
AIMS MATHEMATICS | 2019年 / 4卷 / 05期
关键词
blow-up; degenerate nonlinear parabolic problem; global existence; GRAVITY CURRENTS;
D O I
10.3934/math.2019.5.1488
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the existence, uniqueness, and finite time blow-up of the solution to the degenerate nonlinear parabolic problem: u(tau) = (xi(r)u(m)u(xi))/xi(r) +u(p) or 0 < xi < a, 0 < tau < Gamma, u (xi, 0) = u(0) (xi) for 0 <= xi <= a, and u (0, tau) = 0 = u (a, tau) for 0 < tau < Gamma, where u(0) (xi) is a positive function and u(0) (0) = 0 = u(0) (a). In addition, we prove that u exists globally if a is small through constructing a global-exist upper solution, and u(tau) blows up in a finite time.
引用
收藏
页码:1488 / 1498
页数:11
相关论文
共 50 条