Blow-up for degenerate nonlinear parabolic problem

被引:1
作者
Chan, W. Y. [1 ]
机构
[1] Texas A&M Univ, Dept Math, Texarkana, TX 75503 USA
来源
AIMS MATHEMATICS | 2019年 / 4卷 / 05期
关键词
blow-up; degenerate nonlinear parabolic problem; global existence; GRAVITY CURRENTS;
D O I
10.3934/math.2019.5.1488
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the existence, uniqueness, and finite time blow-up of the solution to the degenerate nonlinear parabolic problem: u(tau) = (xi(r)u(m)u(xi))/xi(r) +u(p) or 0 < xi < a, 0 < tau < Gamma, u (xi, 0) = u(0) (xi) for 0 <= xi <= a, and u (0, tau) = 0 = u (a, tau) for 0 < tau < Gamma, where u(0) (xi) is a positive function and u(0) (0) = 0 = u(0) (a). In addition, we prove that u exists globally if a is small through constructing a global-exist upper solution, and u(tau) blows up in a finite time.
引用
收藏
页码:1488 / 1498
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 1992, NONLINEAR PARABOLIC, DOI DOI 10.1007/978-1-4615-3034-3
[2]  
[Anonymous], 1981, Differ. Uravn.
[3]  
Chan C Y., 2008, P DYNAMIC SYSTEMS AP, V5, P85
[4]   A NUMERICAL-METHOD FOR SEMILINEAR SINGULAR PARABOLIC QUENCHING PROBLEMS [J].
CHAN, CY ;
CHEN, CS .
QUARTERLY OF APPLIED MATHEMATICS, 1989, 47 (01) :45-57
[5]   The blow-up rate for a degenerate parabolic equation with a non-local source [J].
Deng, WB ;
Duan, ZW ;
Xie, CH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 264 (02) :577-597
[6]   Theory of creeping gravity currents of a non-Newtonian liquid [J].
Gratton, J ;
Minotti, F ;
Mahajan, SM .
PHYSICAL REVIEW E, 1999, 60 (06) :6960-6967
[7]   DIFFUSION OF BIOLOGICAL POPULATIONS [J].
GURTIN, ME ;
MACCAMY, RC .
MATHEMATICAL BIOSCIENCES, 1977, 33 (1-2) :35-49
[9]   Numerical solution of nonlinear reaction diffusion processes [J].
Le Roux, MN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (05) :1644-1656
[10]   SOME EXISTENCE AND NONEXISTENCE THEOREMS FOR SOLUTIONS OF DEGENERATE PARABOLIC EQUATIONS [J].
LEVINE, HA ;
SACKS, PE .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 52 (02) :135-161