Spatial interpolation of the atmospheric water vapor content between sites in a ground-based GPS network

被引:19
作者
Emardson, TR [1 ]
Johansson, JM
机构
[1] Chalmers Univ Technol, Onsala Space Observ, S-43992 Onsala, Sweden
[2] SP Swedish Natl Testing & Res Inst, Boras, Sweden
关键词
D O I
10.1029/98GL02504
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We have studied three methods of spatially interpolating GPS-estimated wet delay time series. Five months of data from three sites in the Swedish continuously operating GPS network were used for interpolation to a fourth site. Different geometries were used, resulting in interpolation distances of 40-120 km. To assess the quality of the interpolations we compared the obtained time series with estimated wet delay from a GPS station and with radiosonde data. A method based on the theory of atmospheric turbulence showed the lowest errors when compared to both the GPS estimates and the radiosonde data. The rms errors using this method are typically 1 cm.
引用
收藏
页码:3347 / 3350
页数:4
相关论文
共 50 条
[21]   COMPARISON OF RADIOPHYSICAL AND OPTICAL INFRARED GROUND-BASED METHODS FOR MEASURING INTEGRATED CONTENT OF ATMOSPHERIC WATER VAPOR IN ATMOSPHERE [J].
Ionov, D. V. ;
Kalinnikov, V. V. ;
Timofeyev, Yu. M. ;
Zaitsev, N. A. ;
Virolainen, Y. A. ;
Kostsov, V. S. ;
Poberovskii, A. V. .
RADIOPHYSICS AND QUANTUM ELECTRONICS, 2017, 60 (04) :300-308
[22]   Comparison of Radiophysical and Optical Infrared Ground-Based Methods for Measuring Integrated Content of Atmospheric Water Vapor in Atmosphere [J].
D. V. Ionov ;
V. V. Kalinnikov ;
Yu. M. Timofeyev ;
N. A. Zaitsev ;
Y. A. Virolainen ;
V. S. Kostsov ;
A. V. Poberovskii .
Radiophysics and Quantum Electronics, 2017, 60 :300-308
[23]   Feasibility of a new ground-based microwave measurement method for the atmospheric water vapor [J].
Hashimoto, S ;
Yamashita, N ;
Mikami, T .
IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, :1695-1697
[24]   Using ground-based GPS to characterize atmospheric turbulence [J].
Nilsson, T. ;
Davis, J. L. ;
Hill, E. M. .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36
[25]   Ground-based spatial interferometers and atmospheric turbulence [J].
Lukin, V.P. ;
Fortes, B.V. .
Atmospheric and Oceanic Optics(English Edition of the Journal Optika Atmosfery i Okeana), 1995, 8 (12)
[26]   Precipitable Water Vapor Estimates in the Australian Region from Ground-Based GPS Observations [J].
Choy, Suelynn ;
Wang, Chuan-Sheng ;
Yeh, Ta-Kang ;
Dawson, John ;
Jia, Minghai ;
Kuleshov, Yuriy .
ADVANCES IN METEOROLOGY, 2015, 2015
[27]   Analysis of combining ground-based GPS network and space-based COSMIC occultation observation for precipitable water vapor application [J].
Xu, Chaoqian ;
Shi, Junbo ;
Guo, Jiming ;
Xu, Xiaohua .
Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2011, 36 (04) :467-470
[28]   Remote sensing of Antarctic atmospheric water vapour using ground-based GPS meteorology [J].
Suparta, Wayan ;
Ali, Mohd. Alauddin Mohd. ;
Yatim, Baharudin ;
Misran, Norbahiah .
2007 5TH STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT, 2007, :401-+
[29]   Ground-based network for atmospheric pressure fluctuations [J].
J Atmos Oceanic Technol, 5 (1001-1023)
[30]   A ground-based network for atmospheric pressure fluctuations [J].
Hauf, T ;
Finke, U ;
Neisser, J ;
Gull, G ;
Stangenberg, JG .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 1996, 13 (05) :1001-1023