On the distribution of αp modulo one for primes p of a special form

被引:8
作者
Todorova, T. L. [1 ]
Tolev, D. I. [1 ]
机构
[1] Sofia Univ St Kl Ohridsky, Fac Math & Informat, BG-1164 Sofia, Bulgaria
关键词
linear sieve; almost primes; distribution modulo one; NUMBERS;
D O I
10.2478/s12175-010-0045-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A classical problem in analytic number theory is to study the distribution of alpha p modulo 1, where alpha is irrational and p runs over the set of primes. We consider the subsequence generated by the primes p such that p+2 is an almost-prime (the existence of infinitely many such p is another topical result in prime number theory) and prove that its distribution has a similar property.
引用
收藏
页码:771 / 786
页数:16
相关论文
共 19 条
[1]  
[Anonymous], 1997, The Hardy-Littlewood Method
[2]  
[Anonymous], 1973, Sci. Sin
[3]  
[Anonymous], 1980, Acta Arith.
[4]  
Davenport A., 1967, Grad. Texts in Math.
[5]  
Green B., 2006, J THEOR NOMBR BORDX, V18, P147, DOI DOI 10.5802/jtnb.538
[6]   The primes contain arbitrarily long arithmetic progressions [J].
Green, Ben ;
Tao, Terence .
ANNALS OF MATHEMATICS, 2008, 167 (02) :481-547
[7]  
Halberstam H., 1974, Lond. Math. Soc. Monographs
[8]   PRIME-NUMBERS IN SHORT INTERVALS AND A GENERALIZED VAUGHAN IDENTITY [J].
HEATHBROWN, DR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (06) :1365-1377
[9]  
HEATHBROWN DR, 2002, P LOND MATH SOC, V84, P396
[10]  
Hua LK., 1938, Quart. J. Math. Oxford, V9, P68, DOI [10.1093/qmath/os-9.1.68, DOI 10.1093/QMATH/OS-9.1.68]