The influence on the optical properties of cholesteric liquid crystal displays (LCDs) was examined for neutral molecule binding by mesogen/receptors in the mesomorphic phase. The motivation was to prepare neutral molecule sensors that use a colour change to signal analyte binding. A receptor that binds barbiturate analytes was modified with two or one cholesteryl groups to yield compounds 2 and 3, respectively. LCDs were prepared by incorporating one of the receptor/mesogen compounds into a cholesteric LC blend along with a potential H-bonding guest. The optical properties of the LCDs were then determined by measuring the absorbance of the displays. For various LCDs, the colour of the display depended upon several factors: the amount of guest molecule used, the number of cholesteryl side chains on the receptor and the mole concentration of receptor/mesogen in the blend. In particular, complementary host/guest binding of H-bonding analytes by the bis(cholesteryl) receptor 2 in a cholesteric LCD caused a change of up to +70 nm, which was observed by the naked eye as a blue-to-orange colour change. Control experiments confirm that the colour of an LCD is a consequence of molecular recognition in the mesomorphic phase.