Limit theorems for branching Markov processes

被引:26
作者
Chen, Zhen-Qing
Shiozawa, Yuichi
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Tohoku Univ, Inst Math, Sendai, Miyagi 9808578, Japan
基金
美国国家科学基金会;
关键词
branching Markov processes; limit theorem; h-transform; Schrodinger operator; Dirichlet form; gaugeability;
D O I
10.1016/j.jfa.2007.05.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish almost sure limit theorems for a branching symmetric Hunt process in terms of the principal eigenvalue and the ground state of an associated Schrodinger operator. Here the branching rate and the branching mechanism can be state-dependent. In particular, the branching rate can be a measure belonging to a certain Kato class and is allowed to be singular with respect to the symmetrizing measure for the underlying Hunt process X. The almost sure limit theorems are established under the assumption that the associated Schrodinger operator of X has a spectral gap. Such an assumption is satisfied if the underlying process X is a Brownian motion, a symmetric alpha-stable-like process on R-n or a relativistic symmetric stable process on R-n. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:374 / 399
页数:26
相关论文
共 26 条
[1]  
Albeverio S., 1991, RANDOM PARTIAL DIFFE, V102, P1, DOI DOI 10.1007/978-3-0348-6413-8_1
[2]  
[Anonymous], 1967, MARKOV PROCESSES POT
[3]  
[Anonymous], 1958, THEOR PROBAB APPL+
[4]   STRONG LIMIT-THEOREMS FOR GENERAL SUPERCRITICAL BRANCHING-PROCESSES WITH APPLICATIONS TO BRANCHING DIFFUSIONS [J].
ASMUSSEN, S ;
HERING, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 36 (03) :195-212
[5]   RELATIVISTIC SCHRODINGER-OPERATORS - ASYMPTOTIC-BEHAVIOR OF THE EIGENFUNCTIONS [J].
CARMONA, R ;
MASTERS, WC ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 91 (01) :117-142
[6]   Gaugeability and conditional gaugeability [J].
Chen, ZQ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (11) :4639-4679
[7]   Drift transforms and Green function estimates for discontinuous processes [J].
Chen, ZQ ;
Song, RM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (01) :262-281
[8]  
CHEN ZQ, 1994, NAGOYA MATH J, V136, P1
[9]   Heat kernel estimates for stable-like processes on d-sets [J].
Chen, ZQ ;
Kumagai, T .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 108 (01) :27-62
[10]   Absolute continuity of symmetric Markov processes [J].
Chen, ZQ ;
Fitzsimmons, PJ ;
Takeda, M ;
Ying, J ;
Zhang, TS .
ANNALS OF PROBABILITY, 2004, 32 (3A) :2067-2098