Asymmetric silica composite polymer electrolyte membrane for water management of fuel cells

被引:19
作者
Bae, Insung [1 ]
Oh, Keun-Hwan [1 ]
Yun, Sung-Hyun [1 ]
Kim, Hyuk [1 ]
机构
[1] LG Chem, Corp R&D, 188 Munji Ro, Daejeon, South Korea
关键词
Asymmetric membrane; Hydrophobic silica; Polymer electrolyte membrane fuel cells; Water management; PROTON-EXCHANGE MEMBRANES; CARBON NANOTUBES; PERFORMANCE; NANOPARTICLES; COPOLYMERS;
D O I
10.1016/j.memsci.2017.07.058
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
We prepared an asymmetric composite membrane in which surface modified silica nanoparticles were added to sulfonated poly(arylene ether ketone) (SPAEK). The asymmetric structure, hydrophilic silica to the anode side and hydrophobic silica to the cathode side in the polymer matrix, enhanced the water back diffusion from the cathode to anode within the membrane, which results in an increase of proton conductivity, particularly under low humidity conditions. The improved water back diffusion is attributed to the different water retention character and surface energy gradient of surface modified silica that accelerates water transport. The asymmetric composite membrane exhibited high and stable electrochemical performance of a fuel cell. Analysis of drain water and electrochemical characterization supports the structural effect of the asymmetric composite membrane for efficient water management.
引用
收藏
页码:52 / 59
页数:8
相关论文
共 46 条
[1]   Aliphatic/aromatic polyimide lonomers as a proton conductive membrane for fuel cell applications [J].
Asano, N ;
Aoki, M ;
Suzuki, S ;
Miyatake, K ;
Uchida, H ;
Watanabe, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (05) :1762-1769
[2]   Fundamental investigations of the effect of the linkage group on the behavior of hydrophilic-hydrophobic poly(arylene ether sulfone) multiblock copolymers for proton exchange membrane fuel cells [J].
Badami, Anand S. ;
Lane, Ozma ;
Lee, Hae-Seung ;
Roy, Abhishek ;
McGrath, James E. .
JOURNAL OF MEMBRANE SCIENCE, 2009, 333 (1-2) :1-11
[3]   Operating proton exchange membrane fuel cells without external humidification of the reactant gases - Fundamental aspects [J].
Buchi, FN ;
Srinivasan, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (08) :2767-2772
[4]  
Carrette L, 2001, FUEL CELLS, V1, P5, DOI 10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO
[5]  
2-G
[6]   A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells [J].
Dai, Wei ;
Wang, Haijiang ;
Yuan, Xiao-Zi ;
Martin, Jonathan J. ;
Yang, Daijun ;
Qiao, Jinli ;
Ma, Jianxin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (23) :9461-9478
[7]   Polybenzimidazole/silica nanocomposites: Organic-inorganic hybrid membranes for PEM fuel cell [J].
Ghosh, Sandip ;
Maity, Sudhangshu ;
Jana, Tushar .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (38) :14897-14906
[8]   A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes [J].
Gong, Chunli ;
Zheng, Xuan ;
Liu, Hai ;
Wang, Guangjin ;
Cheng, Fan ;
Zheng, Genwen ;
Wen, Sheng ;
Law, Wing-Cheung ;
Tsui, Chi-Pong ;
Tang, Chak-Yin .
JOURNAL OF POWER SOURCES, 2016, 325 :453-464
[9]  
HERTL W, 1971, J PHYS CHEM-US, V75, P2181
[10]   Alternative polymer systems for proton exchange membranes (PEMs) [J].
Hickner, MA ;
Ghassemi, H ;
Kim, YS ;
Einsla, BR ;
McGrath, JE .
CHEMICAL REVIEWS, 2004, 104 (10) :4587-4611