Fundamental solutions for the conformable time fractional Phi-4 and space-time fractional simplified MCH equations

被引:17
作者
Abdelrahman, Mahmoud A. E. [1 ,2 ]
Hassan, S. Z. [3 ]
Alomair, R. A. [3 ]
Alsaleh, D. M. [4 ]
机构
[1] Taibah Univ, Coll Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Imam Abdulrahman Bin Faisal Univ, Coll Sci & Humanities, Dept Math, Jubail Ind City, Saudi Arabia
[4] Imam Abdulrahman Bin Faisal Univ, Coll Sci, Dept Math, Dammam, Saudi Arabia
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 06期
关键词
fractional Phi-4 equation; fractional MCH equation; unified solver method; solitons; conformable derivative; physical applications; DIFFERENTIAL-EQUATIONS; MODULATION INSTABILITY; OPTICAL SOLITONS; WAVE SOLUTIONS; EXPANSION;
D O I
10.3934/math.2021386
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct new solitary structures for time fractional Phi-4 and space-time fractional simplified modified Camassa-Holm (MCH) equations, utilizing the unified solver technique. The time (space-time) fractional derivatives are defined via sense of the new conformable fractional derivative. The unified solver technique extract vital solutions in explicit way. The obtained solutions may be beneficial for explaining many complex phenomena arising in fluid mechanics, nuclear, plasma and particle physics. The unified solver method is a vital tool for handling further models arising in applied science and new physics. For detailed physical dynamical representation of our results, 3D and 2D profiles to some of the gained solutions are also illustrated using Matlab software.
引用
收藏
页码:6555 / 6568
页数:14
相关论文
共 43 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]  
Abdelrahman, 2018, PRAMANA, V91, P1
[3]   A note on Riccati-Bernoulli Sub-ODE method combined with complex transform method applied to fractional differential equations [J].
Abdelrahman, Mahmoud A.E. .
Nonlinear Engineering, 2018, 7 (04) :279-285
[4]   Closed-form solutions to the conformable space-time fractional simplified MCH equation and time fractional Phi-4 equation [J].
Abdelrahman, Mahmoud A. E. ;
Alkhidhr, Hanan A. .
RESULTS IN PHYSICS, 2020, 18
[5]   Exact solitary wave solutions of the complex nonlinear Schrodinger equations [J].
Arbabi, Somayeh ;
Najafi, Mohammad .
OPTIK, 2016, 127 (11) :4682-4688
[6]   Modulation instability analysis of modify unstable nonlinear schrodinger dynamical equation and its optical soliton solutions [J].
Arshad, Muhammad ;
Seadawy, Aly R. ;
Lu, Dianchen ;
Jun, Wang .
RESULTS IN PHYSICS, 2017, 7 :4153-4161
[7]   Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion [J].
Bulut, Hasan ;
Sulaiman, Tukur Abdulkadir ;
Baskonus, Haci Mehmet .
OPTIK, 2018, 163 :1-7
[8]   Jacobian elliptic function method for nonlinear differential-difference equations [J].
Dai, CQ ;
Zhang, JF .
CHAOS SOLITONS & FRACTALS, 2006, 27 (04) :1042-1047
[9]   Travelling wave solutions for a nonlinear variant of the PHI-four equation [J].
Deng, Xijun ;
Zhao, Ming ;
Li, Xi .
MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (3-4) :617-622
[10]  
Faraz N, 2011, J KING SAUD UNIV SCI, V23, P413, DOI DOI 10.1016/j.jksus.2010.07.025