A quantum magnetic analogue to the critical point of water

被引:80
作者
Larrea Jimenez, J. [1 ,2 ]
Crone, S. P. G. [3 ,4 ]
Fogh, E. [2 ]
Zayed, M. E. [5 ]
Lortz, R. [6 ]
Pomjakushina, E. [7 ]
Conder, K. [7 ]
Laeuchli, A. M. [8 ]
Weber, L. [9 ]
Wessel, S. [9 ]
Honecker, A. [10 ]
Normand, B. [2 ,11 ]
Rueegg, Ch. [2 ,11 ,12 ,13 ]
Corboz, P. [3 ,4 ]
Ronnow, H. M. [2 ]
Mila, F. [2 ]
机构
[1] Univ Sao Paulo, Inst Phys, Lab Quantum Matter Extreme Condit, Sao Paulo, Brazil
[2] Ecole Polytech Fed Lausanne EPFL, Inst Phys, Lausanne, Switzerland
[3] Univ Amsterdam, Inst Theoret Phys, Amsterdam, Netherlands
[4] Univ Amsterdam, Delta Inst Theoret Phys, Amsterdam, Netherlands
[5] Carnegie Mellon Univ Qatar, Dept Phys, Doha, Qatar
[6] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China
[7] Paul Scherrer Inst, Lab Multiscale Mat Expt, Villigen, Switzerland
[8] Univ Innsbruck, Inst Theoret Phys, Innsbruck, Austria
[9] Rhein Westfal TH Aachen, Inst Theoret Festkorperphys, Aachen, Germany
[10] CY Cergy Paris Univ, CNRS, UMR 8089, Lab Phys Theor & Modelisat, Cergy Pontoise, France
[11] Paul Scherrer Inst, Villigen, Switzerland
[12] Swiss Fed Inst Technol, Inst Quantum Elect, Hongg, Switzerland
[13] Univ Geneva, Dept Quantum Matter Phys, Geneva, Switzerland
基金
瑞士国家科学基金会; 巴西圣保罗研究基金会; 美国安德鲁·梅隆基金会; 欧洲研究理事会;
关键词
MEAN-FIELD THEORY; CRITICAL-BEHAVIOR; GROUND-STATE; SPIN; PHASES; SRCU2(BO3)(2); UNIVERSALITY; TRANSITION; MODEL;
D O I
10.1038/s41586-021-03411-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
At the liquid-gas phase transition in water, the density has a discontinuity at atmospheric pressure; however, the line of these first-order transitions defined by increasing the applied pressure terminates at the critical point(1), a concept ubiquitous in statistical thermodynamics(2). In correlated quantum materials, it was predicted(3) and then confirmed experimentally(4,5) that a critical point terminates the line of Mott metal-insulator transitions, which are also first-order with a discontinuous charge carrier density. In quantum spin systems, continuous quantum phase transitions(6) have been controlled by pressure(7,8), applied magnetic field(9,10) and disorder(11), but discontinuous quantum phase transitions have received less attention. The geometrically frustrated quantum antiferromagnet SrCu2(BO3)(2) constitutes a near-exact realization of the paradigmatic Shastry-Sutherland model(12-14) and displays exotic phenomena including magnetization plateaus(15), low-lying bound-state excitations(16), anomalous thermodynamics(17) and discontinuous quantum phase transitions(18,19). Here we control both the pressure and the magnetic field applied to SrCu2(BO3)(2) to provide evidence of critical-point physics in a pure spin system. We use high-precision specific-heat measurements to demonstrate that, as in water, the pressure-temperature phase diagram has a first-order transition line that separates phases with different local magnetic energy densities, and that terminates at an Ising critical point. We provide a quantitative explanation of our data using recently developed finite-temperature tensor-network methods(17,20-22). These results further our understanding of first-order quantum phase transitions in quantum magnetism, with potential applications in materials where anisotropic spin interactions produce the topological properties(23,24) that are useful for spintronic applications.
引用
收藏
页码:370 / +
页数:12
相关论文
共 57 条
[1]  
[Anonymous], 1995, Principles of Condensed Matter Physics
[2]  
[Anonymous], 2004, Renormalization algorithms for quantum-many body systems in two and higher dimensions
[3]   Implementing global Abelian symmetries in projected entangled-pair state algorithms [J].
Bauer, B. ;
Corboz, P. ;
Orus, R. ;
Troyer, M. .
PHYSICAL REVIEW B, 2011, 83 (12)
[4]   Sign switching of dimer correlations in SrCu2(BO3)2 under hydrostatic pressure [J].
Bettler, S. ;
Stoppel, L. ;
Yan, Z. ;
Gvasaliya, S. ;
Zheludev, A. .
PHYSICAL REVIEW RESEARCH, 2020, 2 (01)
[5]   Competition between intermediate plaquette phases in SrCu2(BO3)2 under pressure [J].
Boos, C. ;
Crone, S. P. G. ;
Niesen, I. A. ;
Corboz, P. ;
Schmidt, K. P. ;
Mila, F. .
PHYSICAL REVIEW B, 2019, 100 (14)
[6]   Observation of two independent skyrmion phases in a chiral magnetic material [J].
Chacon, A. ;
Heinen, L. ;
Halder, M. ;
Bauer, A. ;
Simeth, W. ;
Muehlbauer, S. ;
Berger, H. ;
Garst, M. ;
Rosch, A. ;
Pfleiderer, C. .
NATURE PHYSICS, 2018, 14 (09) :936-+
[7]   Competing States in the t-J Model: Uniform d-Wave State versus Stripe State [J].
Corboz, Philippe ;
Rice, T. M. ;
Troyer, Matthias .
PHYSICAL REVIEW LETTERS, 2014, 113 (04)
[8]   Tensor network study of the Shastry-Sutherland model in zero magnetic field [J].
Corboz, Philippe ;
Mila, Frederic .
PHYSICAL REVIEW B, 2013, 87 (11)
[9]   Time evolution of an infinite projected entangled pair state: An efficient algorithm [J].
Czarnik, Piotr ;
Dziarmaga, Jacek ;
Corboz, Philippe .
PHYSICAL REVIEW B, 2019, 99 (03)
[10]   Projected entangled pair states at finite temperature: Iterative self-consistent bond renormalization for exact imaginary time evolution [J].
Czarnik, Piotr ;
Dziarmaga, Jacek .
PHYSICAL REVIEW B, 2015, 92 (03)