Allee effect acting on the prey species in a Leslie-Gower predation model

被引:33
作者
Martinez-Jeraldo, Nicole [1 ]
Aguirre, Pablo [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Casilla 110-5, Valparaiso, Chile
关键词
Allee effect; Leslie-Gower predator-prey model; Stability; Bifurcations; LIMIT-CYCLES; FUNCTIONAL-RESPONSE; CONSEQUENCES;
D O I
10.1016/j.nonrwa.2018.08.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the consequences of an Allee effect acting on the prey species in a Leslie-Gower predator-prey model. For this goal we make extensive use of analytical tools from dynamical systems theory complemented with a numerical bifurcation analysis. By studying the dynamics at infinity under a suitable compactification we prove that the model is well-posed in the sense that all the solutions are bounded. We provide a thorough analysis of the number and stability of equilibrium points. In particular, the origin is a non-hyperbolic equilibrium and presents different regimes of local (un)stability depending on certain conditions on the model parameters. In addition, we find curves of homoclinic, Hopf, and saddle-node bifurcations around a Bogdanov-Takens point. In this process, our findings indicate that the survival threshold for both populations in the two-dimensional phase space can be either a limit cycle, a homoclinic orbit, or the stable manifold of a saddle-equilibrium. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:895 / 917
页数:23
相关论文
共 37 条
[21]   A Leslie-Gower-type predator-prey model with sigmoid functional response [J].
Gonzalez-Olivares, Eduardo ;
Tintinago-Ruiz, Paulo C. ;
Rojas-Palma, Alejandro .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (09) :1895-1909
[22]   Double Allee effects on prey in a modified Rosenzweig-MacArthur predator-prey model [J].
González-Olivares, Eduardo ;
Huincahue-Arcos, Jaime .
Lecture Notes in Electrical Engineering, 2014, 307 :105-120
[23]   UNIQUENESS OF LIMIT CYCLES AND MULTIPLE ATTRACTORS IN A GAUSE-TYPE PREDATOR-PREY MODEL WITH NONMONOTONIC FUNCTIONAL RESPONSE AND ALLEE EFFECT ON PREY [J].
Gonzalez-Olivares, Eduardo ;
Gonzalez-Yanez, Betsabe ;
Mena-Lorca, Jaime ;
Flores, Jose D. .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2013, 10 (02) :345-367
[24]   Limit cycles in a Gause-type predator-prey model with sigmoid functional response and weak Allee effect on prey [J].
Gonzalez-Olivares, Eduardo ;
Rojas-Palma, Alejandro .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (08) :963-975
[25]   Consequences of double Allee effect on the number of limit cycles in a predator-prey model [J].
Gonzalez-Olivares, Eduardo ;
Gonzalez-Yanez, Betsabe ;
Mena Lorca, Jaime ;
Rojas-Palma, Alejandro ;
Flores, Jose D. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (09) :3449-3463
[26]   Numerical methods for the generalized Hopf bifurcation [J].
Govaerts, W ;
Kuznetsov, YA ;
Sijnave, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (01) :329-346
[27]   The evidence for Allee effects [J].
Kramer, Andrew M. ;
Dennis, Brian ;
Liebhold, Andrew M. ;
Drake, John M. .
POPULATION ECOLOGY, 2009, 51 (03) :341-354
[28]  
Kuznetsov Y. A., 2004, ELEMENTS APPL BIFURC, P77
[29]  
Lidicker William Z. Jr, 2010, Open Ecology Journal, V3, P71
[30]   Depensation: evidence, models and implications [J].
Liermann, Martin ;
Hilborn, Ray .
FISH AND FISHERIES, 2001, 2 (01) :33-58