Hybrid Structure-Adaptive RBF-ELM Network Classifier

被引:23
|
作者
Wen, Hui [1 ,2 ]
Fan, Hongguang [1 ]
Xie, Weixin [1 ]
Pei, Jihong [1 ]
机构
[1] Shenzhen Univ, ATR Key Lab, Shenzhen 518060, Peoples R China
[2] Hubei Normal Univ, Huangshi 435002, Peoples R China
来源
IEEE ACCESS | 2017年 / 5卷
基金
美国国家科学基金会;
关键词
Extreme learning machine (ELM); radial basis function (RBF); density clustering; hybrid; structure-adaptive; separability analysis; neural network; SEQUENTIAL LEARNING ALGORITHM; EXTREME; SYSTEMS;
D O I
10.1109/ACCESS.2017.2740420
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a hybrid structure-adaptive radial basis function-extreme learning machine (HSARBF-ELM) network classifier is presented. HSARBF-ELM consists of a structure-adaptive radial basis function (SARBF) network and an extreme learning machine (ELM) network of cascade, where the output of the SARBF network hidden layer is used as the input layer of the ELM network. In the HSARBF-ELM network classifier, the SARBF network is utilized to achieve adaptively localizing kernel mapping of input vectors, after that step, the ELM network is utilized to implement global classification of mapping samples in the kernel space. HSARBF-ELM indicates the combination of localized kernel mapping learning and the global nonlinear classification, which combines the advantages of the SARBF network and the ELM network. The quantitative conditions for the separability enhancement and the corresponding theoretical explanation for the HSARBF-ELM network are given, which demonstrate that when input vectors go through the SARBF network, adaptively adjusting the RBF kernel parameters can boost the separability of the original sample space. Thus, the classification performance of the HSARBF-ELM network can be guaranteed theoretically. An appropriate learning algorithm for the HSARBF-ELM network is subsequently presented, which effectively combines the methods of density clustering with a potential function, center-oriented unidirectional repulsive force and the existing ELM algorithm, and the optimized complementary HSARBF-ELM network can be constructed. The experimental results show that the classification performance of the HSARBF-ELM network clearly outperforms the ELM network, and outperforms other classifiers on most classification problems.
引用
收藏
页码:16539 / 16554
页数:16
相关论文
共 50 条
  • [1] A Structure-Adaptive Hybrid RBF-BP Classifier with an Optimized Learning Strategy
    Wen, Hui
    Xie, Weixin
    Pei, Jihong
    PLOS ONE, 2016, 11 (10):
  • [2] A method for mixed data classification base on RBF-ELM network
    Li, Qiude
    Xiong, Qingyu
    Ji, Shengfen
    Yu, Yang
    Wu, Chao
    Yi, Hualing
    NEUROCOMPUTING, 2021, 431 : 7 - 22
  • [3] Diverse activation functions based-hybrid RBF-ELM neural network for medical classification
    Siouda, Roguia
    Nemissi, Mohamed
    Seridi, Hamid
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (02) : 829 - 845
  • [4] Diverse activation functions based-hybrid RBF-ELM neural network for medical classification
    Roguia Siouda
    Mohamed Nemissi
    Hamid Seridi
    Evolutionary Intelligence, 2024, 17 : 829 - 845
  • [5] Research on Measurement Modeling of Spherical Joint Rotation Angle Based on RBF-ELM Network
    Xia, Liangqiong
    Hu, Penghao
    Ma, Kunlong
    Yang, Long
    IEEE SENSORS JOURNAL, 2021, 21 (20) : 23118 - 23124
  • [6] 基于RBF-ELM神经网络的超级电容建模方法
    林小峰
    胡美聘
    杨易旻
    电源技术, 2015, 39 (03) : 546 - 549
  • [7] Structure-Adaptive Convolutional Neural Network for Hyperspectral Image Classification
    Jia, Sen
    Bi, Dongsheng
    Liao, Jianhui
    Jiang, Shuguo
    Xu, Meng
    Zhang, Shuyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [8] 基于增量学习的混合RBF-ELM网络医学数据分类探析
    金丹丹
    闻辉
    延边大学学报(自然科学版), 2024, 50 (03) : 56 - 60
  • [9] Structure-Adaptive Manifold Estimation
    Puchkin, Nikita
    Spokoiny, Vladimir
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23 : 1 - 62
  • [10] Structure-Adaptive Manifold Estimation
    Puchkin, Nikita
    Spokoiny, Vladimir
    Journal of Machine Learning Research, 2022, 23