Multifractal detrended fluctuation analysis: Practical applications to financial time series

被引:62
作者
Thompson, James R. [1 ,2 ]
Wilson, James R. [2 ]
机构
[1] Mitre Corp, 7515 Colshire Dr, Mclean, VA 22102 USA
[2] N Carolina State Univ, Edward P Fitts Dept Ind & Syst Engn, 111 Lampe Dr, Raleigh, NC 27695 USA
关键词
Financial time series; Multifractal process; Multifractal detrended fluctuation analysis; Multifractal spectrum; Self-similar process; AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY; RANDOM-WALK; MODELS; DEPENDENCE; RETURNS; MARKETS;
D O I
10.1016/j.matcom.2016.03.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
To analyze financial time series exhibiting volatility clustering or other highly irregular behavior, we exploit multifractal detrended fluctuation analysis (MF-DFA). We summarize the use of local Holder exponents, generalized Hurst exponents, and the multifractal spectrum in characterizing the way that the sample paths of a multifractal stochastic process exhibit light-or heavy-tailed fluctuations as well as short-or long-range dependence on different time scales. We detail the development of a robust, computationally efficient software tool for estimating the multifractal spectrum from a time series using MF-DFA, with special emphasis on selecting the algorithm's parameters. The software is tested on simulated sample paths of Brownian motion, fractional Brownian motion, and the binomial multiplicative process to verify the accuracy of the resulting multifractal spectrum estimates. We also perform an in-depth analysis of General Electric's stock price using conventional time series models, and we contrast the results with those obtained using MF-DFA. (C) 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:63 / 88
页数:26
相关论文
共 40 条
[1]  
[Anonymous], 2013, FORECAST FORECASTING
[2]  
[Anonymous], 1977, FRACTAL GEOMETRY NAT
[3]   MULTIFRACTAL ANALYSIS IN A MIXED ASYMPTOTIC FRAMEWORK [J].
Bacry, Emmanuel ;
Gloter, Arnaud ;
Hoffmann, Marc ;
Muzy, Jean Francois .
ANNALS OF APPLIED PROBABILITY, 2010, 20 (05) :1729-1760
[4]   Fractionally integrated generalized autoregressive conditional heteroskedasticity [J].
Baillie, RT ;
Bollerslev, T ;
Mikkelsen, HO .
JOURNAL OF ECONOMETRICS, 1996, 74 (01) :3-30
[5]  
Baillie RT, 1996, J APPL ECONOM, V11, P23, DOI 10.1002/(SICI)1099-1255(199601)11:1<23::AID-JAE374>3.0.CO
[6]  
2-M
[7]  
Beine M., 2002, APPL FINANCIAL EC, V12, P589, DOI DOI 10.1080/09603100010014041
[8]  
Beltratti A., 2005, J RISK, V7, P21, DOI [10.21314/JOR.2005.119, DOI 10.21314/JOR.2005.119]
[9]  
Beran J., 1994, Statistics for Long-Memory Processes
[10]   GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY [J].
BOLLERSLEV, T .
JOURNAL OF ECONOMETRICS, 1986, 31 (03) :307-327