Blow-up behavior outside the origin for a semilinear wave equation in the radial case

被引:20
作者
Merle, Frank [1 ]
Zaag, Hatem [2 ]
机构
[1] Univ Cergy Pontoise, Cergy Pontoise, France
[2] Univ Paris 13, CNRS UMR 7539, LAGA, F-93430 Villetaneuse, France
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2011年 / 135卷 / 04期
关键词
Wave equation; Radial case; Characteristic point; Blow-up set; REGULARITY; EXISTENCE; CURVE; SET;
D O I
10.1016/j.bulsci.2011.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the semilinear wave equation in the radial case with conformal subcritical power nonlinearity. If we consider a blow-up point different from the origin, then we exhibit a new Lyapunov functional which is a perturbation of the one-dimensional case and extend all our previous results known in the one-dimensional case. In particular, we show that the blow-up set near non-zero non-characteristic points is of class C-1, and that the set of characteristic points is made of concentric spheres in finite number in {1/R <= vertical bar x vertical bar <= R} for any R > 1. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:353 / 373
页数:21
相关论文
共 22 条
[1]  
ALINHAC S, 2002, JOURN EQ DER PART FO
[2]  
[Anonymous], ARXIV10100618
[3]  
[Anonymous], 1995, Progr. Nonlinear Differential Equations Appl.
[4]  
[Anonymous], ARXIV10022328
[5]  
[Anonymous], 1998, Geometric Wave Equations, Courant Lecture Notes in Mathematics
[6]  
Antonini C, 2001, INT MATH RES NOTICES, V2001, P1141
[7]   THE BLOW-UP BOUNDARY FOR NONLINEAR-WAVE EQUATIONS [J].
CAFFARELLI, LA ;
FRIEDMAN, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 297 (01) :223-241
[8]   DIFFERENTIABILITY OF THE BLOW-UP CURVE FOR ONE DIMENSIONAL NONLINEAR-WAVE EQUATIONS [J].
CAFFARELLI, LA ;
FRIEDMAN, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 91 (01) :83-98
[9]   THE GLOBAL CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR-WAVE EQUATION [J].
GINIBRE, J ;
SOFFER, A ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 110 (01) :96-130
[10]  
HAMZA MA, 2010, ARXIV10053771