A Residual Distribution Method Using Discontinuous Elements for the Computation of Possibly Non Smooth Flows

被引:12
作者
Abgrall, Remi [1 ,2 ]
机构
[1] Univ Bordeaux 1, Team Bacchus, INRIA Bordeaux Sud Ouest, F-33405 Talence, France
[2] Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, France
基金
欧洲研究理事会;
关键词
Discontinuous finite element methods; residual distribution schemes; hyperbolic problems; nonlinear stabilisation; DISTRIBUTION SCHEMES; CONSERVATION-LAWS;
D O I
10.4208/aamm.09-m0934
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we describe a residual distribution (RD) method where, contrarily to "standard" this type schemes, the mesh is not necessarily conformal. It also allows to use discontinuous elements, contrarily to the "standard" case where continuous elements are requested. Moreover, if continuity is forced, the scheme is similar to the standard RD case. Hence, the situation becomes comparable with the Discontinuous Galerkin (DG) method, but it is simpler to implement than DG and has guaranteed L(infinity) bounds. We focus on the second-order case, but the method can be easily generalized to higher degree polynomials.
引用
收藏
页码:32 / 44
页数:13
相关论文
共 14 条
[1]   Residual distribution schemes on quadrilateral meshes [J].
Abgrall, R. ;
Marpeau, F. .
JOURNAL OF SCIENTIFIC COMPUTING, 2007, 30 (01) :131-175
[2]   Essentially non-oscillatory Residual Distribution schemes for hyperbolic problems [J].
Abgrall, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 214 (02) :773-808
[3]   Construction of second-order accurate monotone and stable residual distribution schemes for steady problems [J].
Abgrall, R ;
Mezine, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (02) :474-507
[4]   A simple construction of very high order non-oscillatory compact schemes on unstructured meshes [J].
Abgrall, R. ;
Lerat, A. ;
Ricchiuto, M. ;
Tave, C. .
COMPUTERS & FLUIDS, 2009, 38 (07) :1314-1323
[5]   Toward the ultimate conservative scheme: Following the quest [J].
Abgrall, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 167 (02) :277-315
[6]  
ABGRALL R, 2007, 6439 INRIA
[7]  
ABGRALL R, 2009, J COMPUT PH IN PRESS
[8]  
Abgrall R, 2009, COMMUN COMPUT PHYS, V5, P376
[9]   PARALLEL, ADAPTIVE FINITE-ELEMENT METHODS FOR CONSERVATION-LAWS [J].
BISWAS, R ;
DEVINE, KD ;
FLAHERTY, JE .
APPLIED NUMERICAL MATHEMATICS, 1994, 14 (1-3) :255-283
[10]   A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods [J].
Burbeau, A ;
Sagaut, P ;
Bruneau, CH .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 169 (01) :111-150