Nilpotent centres via inverse integrating factors

被引:13
作者
Algaba, Antonio [1 ]
Garcia, Cristobal [1 ]
Gine, Jaume [2 ]
机构
[1] Univ Huelva, Fac Ciencias, Dept Matemat, Huelva, Spain
[2] Univ Lleida, Escola Politecn Super, Dept Matemat, Ave Jaume 2,69, Lleida 25001, Catalonia, Spain
关键词
non-linear differential systems; integrability problem; nilpotent centre problem; LIMIT-CYCLES; DIFFERENTIAL-EQUATIONS; SYSTEMS; INTEGRABILITY; REVERSIBILITY; BIFURCATIONS; EXISTENCE; MONODROMY; POINT;
D O I
10.1017/S0956792516000103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are interested in the nilpotent centre problem of planar analytic monodromic vector fields. It is known that the formal integrability is not enough to characterize such centres. More general objects are considered as the formal inverse integrating factors. However, the existence of a formal inverse integrating factor is not sufficient to describe all the nilpotent centres. For the family studied in this paper, it is enough.
引用
收藏
页码:781 / 795
页数:15
相关论文
共 24 条
[1]   The center problem for a family of systems of differential equations having a nilpotent singular point [J].
Algaba, A. ;
Garcia, C. ;
Reyes, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) :32-43
[2]   On orbital-reversibility for a class of planar dynamical systems [J].
Algaba, A. ;
Checa, I. ;
Garcia, C. ;
Gamero, E. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (01) :229-239
[3]   A class of non-integrable systems admitting an inverse integrating factor [J].
Algaba, A. ;
Fuentes, N. ;
Garcia, C. ;
Reyes, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (02) :1439-1454
[4]   A new algorithm for determining the monodromy of a planar differential system [J].
Algaba, A. ;
Garcia, C. ;
Reyes, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 237 :419-429
[5]   A note on analytic integrability of planar vector fields [J].
Algaba, A. ;
Garcia, C. ;
Reyes, M. .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2012, 23 :555-562
[6]   Existence of an inverse integrating factor, center problem and integrability of a class of nilpotent systems [J].
Algaba, A. ;
Garcia, C. ;
Reyes, M. .
CHAOS SOLITONS & FRACTALS, 2012, 45 (06) :869-878
[7]   Like-linearizations of vector fields [J].
Algaba, A. ;
Garcia, C. ;
Reyes, M. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (08) :806-816
[8]   The integrability problem for a class of planar systems [J].
Algaba, A. ;
Gamero, E. ;
Garcia, C. .
NONLINEARITY, 2009, 22 (02) :395-420
[9]   Generating limit cycles from a nilpotent critical point via normal forms [J].
Alvarez, MJ ;
Gasull, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (01) :271-287
[10]   Monodromy and stability for nilpotent critical points [J].
Alvarez, MJ ;
Gasull, A .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (04) :1253-1265