Duality of multiparameter Hardy spaces Hp on spaces of homogeneous type

被引:0
作者
Han, Yongsheng [1 ]
Li, Ji [2 ]
Lu, Guozhen [3 ]
机构
[1] Auburn Univ, Dept Math, Auburn, AL 36849 USA
[2] Zhongshan Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[3] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
美国国家科学基金会;
关键词
SINGULAR-INTEGRALS; PRODUCT BMO; INEQUALITIES; COMMUTATORS; VARIABLES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the Carleson measure space CMOp on product spaces of homogeneous type in the sense of Coifman and Weiss [4], and prove that it is the dual space of the product Hardy space H-p of two homogeneous spaces defined in [15]. Our results thus extend the duality theory of Chang and R. Fefferman [2,3] on H-1 (R-+(2) x R-+(2)) with BMO(R-+(2) x R-+(2)) which was established using bi-Hilbert transform. Our method is to use discrete Littlewood-Paley analysis in product spaces recently developed in [13] and [14].
引用
收藏
页码:645 / 685
页数:41
相关论文
共 30 条
[11]   A DISCRETE TRANSFORM AND DECOMPOSITIONS OF DISTRIBUTION SPACES [J].
FRAZIER, M ;
JAWERTH, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (01) :34-170
[12]  
HAN Y, 2007, DISCRETE LITTLEWOOD
[13]  
HAN Y, ENDPOINT ES IN PRESS
[14]  
HAN Y, DISCERETE LITTLEWOOD
[15]  
HAN Y, FORUM MATH
[16]  
Han Y., 2009, TRENDS PARTIAL DIFFE, V10, P99
[17]  
Han YS, 2000, ACTA MATH SIN, V16, P277
[18]  
HAN YS, 1994, MEM AM MATH SOC, V110, pR3
[19]  
Journe Jean-Lin, 1985, Rev. Mat. Iberoamericana, V1, P55, DOI [10.4171/RMI/15, DOI 10.4171/RMI/15]
[20]  
Lacey M, 2009, HOUSTON J MATH, V35, P159