Duality of multiparameter Hardy spaces Hp on spaces of homogeneous type

被引:0
作者
Han, Yongsheng [1 ]
Li, Ji [2 ]
Lu, Guozhen [3 ]
机构
[1] Auburn Univ, Dept Math, Auburn, AL 36849 USA
[2] Zhongshan Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[3] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
美国国家科学基金会;
关键词
SINGULAR-INTEGRALS; PRODUCT BMO; INEQUALITIES; COMMUTATORS; VARIABLES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the Carleson measure space CMOp on product spaces of homogeneous type in the sense of Coifman and Weiss [4], and prove that it is the dual space of the product Hardy space H-p of two homogeneous spaces defined in [15]. Our results thus extend the duality theory of Chang and R. Fefferman [2,3] on H-1 (R-+(2) x R-+(2)) with BMO(R-+(2) x R-+(2)) which was established using bi-Hilbert transform. Our method is to use discrete Littlewood-Paley analysis in product spaces recently developed in [13] and [14].
引用
收藏
页码:645 / 685
页数:41
相关论文
共 30 条
[1]  
[Anonymous], 1971, Lecture Notes in Mathematics
[2]  
[Anonymous], 1982, Mathematical Notes
[3]   A CONTINUOUS VERSION OF DUALITY OF H-1 WITH BMO ON THE BIDISC [J].
CHANG, SYA ;
FEFFERMAN, R .
ANNALS OF MATHEMATICS, 1980, 112 (01) :179-201
[4]   SOME RECENT DEVELOPMENTS IN FOURIER-ANALYSIS AND HP-THEORY ON PRODUCT DOMAINS [J].
CHANG, SYA ;
FEFFERMAN, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :1-43
[5]  
Christ M., 1990, Colloq. Math., V61, P601
[6]  
David G., 1985, REV MAT IBEROAM, V1, P1, DOI [10.4171/RMI/17, 10.4171/rmi/17]
[7]  
Fefferman C, 1972, ACTA MATH-DJURSHOLM, V129, P137, DOI 10.1007/BF02392215
[8]   SOME MAXIMAL INEQUALITIES [J].
FEFFERMAN, C ;
STEIN, EM .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (01) :107-+
[9]   HARMONIC-ANALYSIS ON PRODUCT-SPACES [J].
FEFFERMAN, R .
ANNALS OF MATHEMATICS, 1987, 126 (01) :109-130
[10]   A characterization of product BMO by commutators [J].
Ferguson, SH ;
Lacey, MT .
ACTA MATHEMATICA, 2002, 189 (02) :143-160