The Inviscid Limit for the Navier-Stokes Equations with Data Analytic Only Near the Boundary

被引:29
|
作者
Kukavica, Igor [1 ]
Vicol, Vlad [2 ]
Wang, Fei [3 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
[2] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[3] Univ Maryland, Dept Math, College Pk, MD 20740 USA
关键词
ZERO-VISCOSITY LIMIT; VANISHING VISCOSITY; WELL-POSEDNESS; ILL-POSEDNESS; VORTICITY EQUATIONS; PRANDTL EQUATIONS; HALF-SPACE; EULER; LAYER; EXISTENCE;
D O I
10.1007/s00205-020-01517-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the inviscid limit for the Navier-Stokes equations in a half space, with initial datum that is analytic only close to the boundary of the domain, and that has Sobolev regularity in the complement. We prove that for such data the solution of the Navier-Stokes equations converges in the vanishing viscosity limit to the solution of the Euler equation, on a constant time interval.
引用
收藏
页码:779 / 827
页数:49
相关论文
共 50 条