Observing Floquet topological order by symmetry resolution

被引:16
作者
Azses, Daniel [1 ]
Torre, Emanuele G. Dalla [2 ,3 ]
Sela, Eran [1 ]
机构
[1] Tel Aviv Univ, Sch Phys & Astron, IL-6997801 Tel Aviv, Israel
[2] Bar Ilan Univ, Dept Phys, IL-5290002 Ramat Gan, Israel
[3] Bar Ilan Univ, Ctr Quantum Entanglement Sci & Technol, IL-5290002 Ramat Gan, Israel
基金
欧洲研究理事会; 以色列科学基金会;
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; QUTIP;
D O I
10.1103/PhysRevB.104.L220301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Symmetry-protected topological order in one dimension leads to protected degeneracies between symmetry blocks of the reduced density matrix. In the presence of periodic driving, topological Floquet phases can be identified in terms of a cycling of these symmetry blocks between different charge quantum numbers. We discuss an example of this phenomenon with an Ising Z2 symmetry, using both analytic methods and real quantum computers. By adiabatically moving along the phase diagram, we demonstrate that the cycling periodicity is broken in Floquet topological phase transitions. An equivalent signature of the topological Floquet phase is identified as a computational power allowing for the teleportation of quantum information.
引用
收藏
页数:6
相关论文
共 58 条
[41]  
Rachel S., ARXIV210506632
[42]   A one-way quantum computer [J].
Raussendorf, R ;
Briegel, HJ .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5188-5191
[43]   Symmetry-protected topological phases with uniform computational power in one dimension [J].
Raussendorf, Robert ;
Wang, Dong-Sheng ;
Prakash, Abhishodh ;
Wei, Tzu-Chieh ;
Stephen, David T. .
PHYSICAL REVIEW A, 2017, 96 (01)
[44]   Abelian Floquet symmetry-protected topological phases in one dimension [J].
Roy, Rahul ;
Harper, Fenner .
PHYSICAL REVIEW B, 2016, 94 (12)
[45]   Anomalous Edge States and the Bulk-Edge Correspondence for Periodically Driven Two-Dimensional Systems [J].
Rudner, Mark S. ;
Lindner, Netanel H. ;
Berg, Erez ;
Levin, Michael .
PHYSICAL REVIEW X, 2013, 3 (03)
[46]   Computational Power of Symmetry-Protected Topological Phases [J].
Stephen, David T. ;
Wang, Dong-Sheng ;
Prakash, Abhishodh ;
Wei, Tzu-Chieh ;
Raussendorf, Robert .
PHYSICAL REVIEW LETTERS, 2017, 119 (01)
[47]  
Tantivasadakarn N, ARXIV210704019
[48]   Classical simulation of noninteracting-fermion quantum circuits [J].
Terhal, BM ;
DiVincenzo, DP .
PHYSICAL REVIEW A, 2002, 65 (03) :10
[49]   Locally bicompact Abelian groups and their character groups [J].
van Kampen, ER .
ANNALS OF MATHEMATICS, 1935, 36 :448-463
[50]   One-dimensional symmetry protected topological phases and their transitions [J].
Verresen, Ruben ;
Moessner, Roderich ;
Pollmann, Frank .
PHYSICAL REVIEW B, 2017, 96 (16)