An Isoperimetric Inequality for Fundamental Tones of Free Plates

被引:35
作者
Chasman, L. M. [1 ]
机构
[1] Knox Coll, Galesburg, IL 61401 USA
基金
美国国家科学基金会;
关键词
RAYLEIGHS CONJECTURE; CLAMPED PLATE; EIGENVALUES; DOMAINS;
D O I
10.1007/s00220-010-1171-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish an isoperimetric inequality for the fundamental tone (first nonzero eigenvalue) of the free plate of a given area, proving the ball is maximal. Given tau > 0, the free plate eigenvalues omega and eigenfunctions u are determined by the equation Delta Delta u - tau Delta u = omega u together with certain natural boundary conditions. The boundary conditions are complicated but arise naturally from the plate Rayleigh quotient, which contains a Hessian squared term |D (2) u|(2). We adapt Weinberger's method from the corresponding free membrane problem, taking the fundamental modes of the unit ball as trial functions. These solutions are a linear combination of Bessel and modified Bessel functions.
引用
收藏
页码:421 / 449
页数:29
相关论文
共 33 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
[Anonymous], MONOGRAPH STUDIES MA
[3]  
[Anonymous], 2015, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics
[4]  
[Anonymous], THESIS U ILLINOIS UR
[5]  
[Anonymous], LONDON MATH SOC LECT
[6]  
[Anonymous], Q APPL MATH
[7]  
[Anonymous], APPL ANAL IN PRESS
[8]  
[Anonymous], 1980, Monographs and Studies in Mathematics
[9]   ON RAYLEIGHS CONJECTURE FOR THE CLAMPED PLATE AND ITS GENERALIZATION TO 3 DIMENSIONS [J].
ASHBAUGH, MS ;
BENGURIA, RD .
DUKE MATHEMATICAL JOURNAL, 1995, 78 (01) :1-17
[10]   Sharp upper bound to the first nonzero Neumann eigenvalue for bounded domains in spaces of constant curvature [J].
Ashbaugh, MS ;
Benguria, RD .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 52 :402-416