Al-Cr-Fe quasicrystals as novel reinforcements in Ti based composites consolidated using high pressure spark plasma sintering

被引:30
|
作者
Li, R. T. [1 ]
Dong, Z. L. [2 ]
Khor, K. A. [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
Metal matrix composites; Quasicrystal; Microhardness; Interfacial layer; Wear mechanism; MECHANICAL-PROPERTIES; PARTICULATE REINFORCEMENT; DENSIFICATION MECHANISMS; TRIBOLOGICAL BEHAVIOR; WEAR-RESISTANCE; TITANIUM-ALLOY; MICROSTRUCTURE; PARTICLES; STRENGTH; ALUMINUM;
D O I
10.1016/j.matdes.2016.04.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ti based metal matrix composites (MMCs) reinforced with Al-Cr-Fe quasicrystals have been prepared using high pressure spark plasma sintering (HP-SPS) with a high heating/cooling rate of 200 degrees C/min between 550 degrees C and 750 degrees C and without any isothermal process. As the sintering pressure increases, the compositional variation of Al-Cr-Fe reinforcements diminishes. It is found that under a sintering pressure of 250 MPa, the phases in Al-Cr-Fe powders, including two quasicrystals, decagonal Al-Cr-Fe and icosahedral Al-Cr-Fe, and two of their approximants, Al-9(Cr, Fe)(4) and Al-8(Cr, Fe)(5), can be preserved. An interfacial layer forms between Ti matrix and Al-Cr-Fe reinforcements in the sintering process. This interfacial layer consists of Al3Ti and AlTi. The incorporation of 20 wt.% Al-Cr-Fe particles into Timatrix was found to improve the microhardness to Hv 480 and reduce the wear rate by around 70%. This implies that Al-Cr-Fe is a promising reinforcement candidate for Ti. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:255 / 263
页数:9
相关论文
共 50 条
  • [1] Microstructure characterization of Al-Cr-Fe quasicrystals sintered using spark plasma sintering
    Li, R. T.
    Dong, Z. L.
    Murugan, Vinod K.
    Zhang, Z. L.
    Khor, K. A.
    MATERIALS CHARACTERIZATION, 2015, 110 : 264 - 271
  • [2] Microstructure and wear resistance properties of Al/Al-Cu-Cr-Fe composites consolidated using spark plasma sintering
    Li, F. Z.
    Tian, L. H.
    Li, R. T.
    Wang, Y.
    Liu, Z. Q.
    COMPOSITE INTERFACES, 2020, 27 (05) : 515 - 527
  • [3] Novel Ti based metal matrix composites reinforced with Al-Cr-Fe quasicrystals approximants
    Li, R. T.
    Dong, Z. L.
    Khun, N. W.
    Khor, K. A.
    MATERIALS SCIENCE AND TECHNOLOGY, 2015, 31 (06) : 688 - 694
  • [4] Spark plasma sintering of Al-Cr-Fe quasicrystals: Electric field effects and densification mechanism
    Li, R. I.
    Dong, Z. L.
    Khor, K. A.
    SCRIPTA MATERIALIA, 2016, 114 : 88 - 92
  • [5] Dynamic Fracture Mechanism of Quasicrystal-Containing Al-Cr-Fe Consolidated Using Spark Plasma Sintering
    Li, Ruitao
    Wang, Zhiyong
    Li, Zhong
    Khor, Khiam Aik
    Dong, Zhili
    CRYSTALS, 2018, 8 (10):
  • [6] Microstructure and strengthening mechanisms in the Al/Al-Cu-Cr-Fe composites consolidated using spark plasma sintering
    Li, R. T.
    Wang, Z. Y.
    Sun, W.
    Hu, H. L.
    Khor, K. A.
    Wang, Y.
    Dong, Z. L.
    MATERIALS CHARACTERIZATION, 2019, 157
  • [7] A novel and high-strength Ti-Al-V-Fe alloy prepared by spark plasma sintering
    Yang, Xin
    Zhang, Zhaoyang
    Wang, Ben
    Li, Yunzhe
    Liu, Gang
    Wang, Yan
    Zhang, Guangxi
    Liu, Shifeng
    POWDER METALLURGY, 2021, 64 (05) : 387 - 395
  • [8] Reactive sintering cBN-Ti-Al composites by spark plasma sintering
    Yuan, Yungang
    Cheng, Xiaozhe
    Chang, Rui
    Li, Tianheng
    Zang, Jianbing
    Wang, Yanhui
    Yu, Yiqing
    Lu, Jing
    Xu, Xipeng
    DIAMOND AND RELATED MATERIALS, 2016, 69 : 138 - 143
  • [9] FSW of bimodal reinforced Al-based composites produced via spark plasma sintering
    Sadeghi, Behzad
    Shamanian, Morteza
    Ashrafizadeh, Fakhreddin
    Cavaliere, Pasquale
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2017, 108 (12) : 1045 - 1054
  • [10] Microstructure and densification of gas atomised Fe-Cr-B based alloy powder consolidated by spark plasma sintering
    Sorour, A. A.
    Chromik, R. R.
    Brochu, M.
    POWDER METALLURGY, 2015, 58 (01) : 20 - 29