Hyperspectral Change Detection Based on Multiple Morphological Profiles

被引:54
作者
Hou, Zengfu [1 ,2 ]
Li, Wei [1 ,2 ]
Li, Lu [3 ]
Tao, Ran [1 ,2 ]
Du, Qian [4 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab Fract Signals & Syst, Beijing 100081, Peoples R China
[3] Beijing Informat Sci & Technol Univ, Sch Automat, Beijing 100101, Peoples R China
[4] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Feature extraction; Hyperspectral imaging; Vegetation; Principal component analysis; Time series analysis; Standards; Spectral analysis; Change detection; guided filtering; hyperspectral image (HSI); morphological attribute profiles (APs); ANOMALY DETECTION; JOINT SPARSE; IMAGES; CLASSIFICATION; FRAMEWORK; ICA;
D O I
10.1109/TGRS.2021.3090802
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the increasing availability of multitemporal hyperspectral imagery, hyperspectral change detection under heterogeneous backgrounds is a challenging task. Due to the complexity of background features, traditional change detection algorithms in the spectral domain cannot effectively detect changed features. A novel method using multiple morphological profiles (MMPs) is proposed for hyperspectral change detection to make full use of spatial information. In the designed framework, first, the max-tree/min-tree strategy is applied to extract different attributes of multitemporal hyperspectral images (HSIs), i.e., area attribute and height attribute. Second, a spectral angle weighted-based local absolute distance (SALA) method is designed to reconstruct the discriminative spectral domain. Then, the absolute distance (AD) is adopted to extract changes in constructed feature domain. Finally, a change map is obtained by guided filtering. Experiments conducted on four real hyperspectral datasets demonstrate that the proposed detector achieves better detection performance.
引用
收藏
页数:12
相关论文
共 45 条
  • [1] Extending post-classification change detection using semantic similarity metrics to overcome class heterogeneity: A study of 1992 and 2001 US National Land Cover Database changes
    Ahlqvist, OlA
    [J]. REMOTE SENSING OF ENVIRONMENT, 2008, 112 (03) : 1226 - 1241
  • [2] A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure
    Bovolo, Francesca
    Bruzzone, Lorenzo
    Marconcini, Mattia
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (07): : 2070 - 2082
  • [3] Bruzzone L, 2016, REMOTE SENS DIGIT IM, V20, P63, DOI 10.1007/978-3-319-47037-5_4
  • [4] A Novel Framework for the Design of Change-Detection Systems for Very-High-Resolution Remote Sensing Images
    Bruzzone, Lorenzo
    Bovolo, Francesca
    [J]. PROCEEDINGS OF THE IEEE, 2013, 101 (03) : 609 - 630
  • [5] Classification of Hyperspectral Images by Using Extended Morphological Attribute Profiles and Independent Component Analysis
    Dalla Mura, Mauro
    Villa, Alberto
    Benediktsson, Jon Atli
    Chanussot, Jocelyn
    Bruzzone, Lorenzo
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (03) : 542 - 546
  • [6] Morphological Attribute Profiles for the Analysis of Very High Resolution Images
    Dalla Mura, Mauro
    Benediktsson, Jon Atli
    Waske, Bjoern
    Bruzzone, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (10): : 3747 - 3762
  • [7] Detection of Land-Cover Transitions in Multitemporal Remote Sensing Images With Active-Learning-Based Compound Classification
    Demir, Beguem
    Bovolo, Francesca
    Bruzzone, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (05): : 1930 - 1941
  • [8] PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data
    Deng, J. S.
    Wang, K.
    Deng, Y. H.
    Qi, G. J.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (16) : 4823 - 4838
  • [9] Unsupervised Deep Slow Feature Analysis for Change Detection in Multi-Temporal Remote Sensing Images
    Du, Bo
    Ru, Lixiang
    Wu, Chen
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (12): : 9976 - 9992
  • [10] Fusion of Difference Images for Change Detection Over Urban Areas
    Du, Peijun
    Liu, Sicong
    Gamba, Paolo
    Tan, Kun
    Xia, Junshi
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (04) : 1076 - 1086