Van der Waals Epitaxial Trilayer MoS2 Crystals for High-Speed Electronics

被引:7
|
作者
Li, Xuefei [1 ,2 ]
Zhang, Zhenfeng [1 ,2 ]
Gao, Tingting [1 ,2 ]
Shi, Xinhang [1 ,2 ]
Gu, Chengru [1 ,2 ]
Wu, Yanqing [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, Wuhan 430074, Peoples R China
[3] Peking Univ, Sch Integrated Circuits, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
contact resistance; current density; saturation velocity; short channels; trilayer MoS; (2); CHEMICAL-VAPOR-DEPOSITION; MONOLAYER MOS2; MOLYBDENUM-DISULFIDE; TRANSISTORS; HETEROSTRUCTURES; CONTACT; BILAYER; GROWTH; LIMIT;
D O I
10.1002/adfm.202208091
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-dimensional MoS2 field-effect transistors (FETs) have great potential for next-generation electronics due to their excellent electronic properties with an atomic thin channel. However, multiple challenges exist for the monolayer MoS2 channel, including interface scattering and ohmic contact. In this work, well-controlled trilayer MoS2 with high mobility and large single crystals is successfully grown on soda-lime glass substrates using chemical vapor deposition (CVD), with a lateral size of up to 148 mu m, which is the largest reported size to date. A record high on/off ratio of approximate to 10(12) and a high carrier mobility of 62 cm(2) V-1 s(-1) of trilayer MoS2 FETs are demonstrated, showing notable advantages compared with the monolayer counterpart. The long-standing issue of monolayer MoS2 performance degradation from physical vapor deposited metal contact can be mitigated by the trilayer MoS2 channel, achieving the lowest contact resistance of 350 ohm mu m using the common method of e-beam evaporated Ni. Moreover, 40-nm channel-length trilayer MoS2 FETs using ultrathin HfLaO dielectrics exhibit a high current of 589 mu A mu m(-1) at a supply voltage of 1 V at room temperature, which increases to 1162 mu A mu m(-1) at 4.3 K, the highest among those using commonly evaporated metal. Record high electron saturation velocity of 4.2 x 10(6) cm s(-1) can be achieved at room temperature.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Photovoltaic Effect in Graphene/MoS2/Si Van der Waals Heterostructures
    Shi, Weilin
    Ma, Xiying
    COATINGS, 2018, 8 (01):
  • [22] Epitaxial registry and crystallinity of MoS2 via molecular beam and metalorganic vapor phase van der Waals epitaxy
    Mortelmans, Wouter
    El Kazzi, Salim
    Groven, Benjamin
    Mehta, Ankit Nalin
    Balaji, Yashwanth
    De Gendt, Stefan
    Heyns, Marc
    Merckling, Clement
    APPLIED PHYSICS LETTERS, 2020, 117 (03)
  • [23] Hybrid van der Waals SnO/MoS2 Heterojunctions for Thermal and Optical Sensing Applications
    Wang, Zhenwei
    He, Xin
    Zhang, Xi-Xiang
    Alshareef, Husam N.
    ADVANCED ELECTRONIC MATERIALS, 2017, 3 (12):
  • [24] Interlayer Trions in the MoS2/WS2 van der Waals Heterostructure
    Deilmann, Thorsten
    Thygesen, Kristian Sommer
    NANO LETTERS, 2018, 18 (02) : 1460 - 1465
  • [25] Controlled Exfoliation of MoS2 Crystals into Trilayer Nanosheets
    Fan, Xiaobin
    Xu, Pengtao
    Li, Yuguang C.
    Zhou, Dekai
    Sun, Yifan
    Nguyen, Minh An T.
    Terrones, Mauricio
    Mallouk, Thomas E.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (15) : 5143 - 5149
  • [26] Colloidal MoS2 van der Waals Template for Growing Highly Uniform Nanomaterials
    Lee, Kang-Nyeoung
    Park, Dae Young
    Choi, Geunchang
    Duc Anh Nguyen
    Choi, Young Chul
    Jeong, Mun Seok
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (31) : 35716 - 35724
  • [27] Origins of genuine Ohmic van der Waals contact between indium and MoS2
    Kim, Bum-Kyu
    Kim, Tae-Hyung
    Choi, Dong-Hwan
    Kim, Hanul
    Watanabe, Kenji
    Taniguchi, Takashi
    Rho, Heesuk
    Kim, Ju-Jin
    Kim, Yong-Hoon
    Bae, Myung-Ho
    NPJ 2D MATERIALS AND APPLICATIONS, 2021, 5 (01)
  • [28] Bipolar phototransistor in a vertical Au/graphene/MoS2 van der Waals heterojunction with photocurrent enhancement
    Li, Jiaqi
    Mao, Xurui
    Xie, Sheng
    Geng, Zhaoxin
    Chen, Hongda
    PHOTONICS RESEARCH, 2020, 8 (01) : 39 - 45
  • [29] van der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation
    Lu, Ning
    Guo, Hongyan
    Wang, Lu
    Wu, Xiaojun
    Zeng, Xiao Cheng
    NANOSCALE, 2014, 6 (09) : 4566 - 4571
  • [30] Probing negatively charged and neutral excitons in MoS2/hBN and hBN/MoS2/hBN van der Waals heterostructures
    Jadczak, J.
    Kutrowska-Girzycka, J.
    Bieniek, M.
    Kazimierczuk, T.
    Kossacki, P.
    Schindler, J. J.
    Debus, J.
    Watanabe, K.
    Taniguchi, T.
    Ho, C. H.
    Wojs, A.
    Hawrylak, P.
    Bryja, L.
    NANOTECHNOLOGY, 2021, 32 (14)