LOW-COMPLEXITY LOSSY COMPRESSION OF HYPERSPECTRAL IMAGES VIA INFORMED QUANTIZATION

被引:8
作者
Abrardo, Andrea [1 ]
Barni, Mauro [1 ]
Magli, Enrico [2 ]
机构
[1] Univ Siena, Dipartimento Ingn Informaz, I-53100 Siena, Italy
[2] Politecn Torino, Dipartimento Elettr, Turin, Italy
来源
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING | 2010年
关键词
D O I
10.1109/ICIP.2010.5651256
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Lossy compression of hyperspectral and ultraspectral images is traditionally performed using 3D transform coding. This approach yields good performance, but the complexity and memory requirements make it unsuitable for onboard compression. In this paper we propose a low-complexity lossy compression scheme based on prediction, quantization and rate-distortion optimization. The scheme employs coset codes coupled with the new concept of "informed quantization", and requires no entropy coding. The performance of the resulting algorithm is competitive with that of state-of-the-art 3D transform coding schemes, but the complexity is immensely lower, making it suitable for onboard compression at high throughputs.
引用
收藏
页码:505 / 508
页数:4
相关论文
共 7 条
[1]  
ABRARDO A, J APPL REMOTE UNPUB
[2]  
ABRARDO A, IEEE T GEOSCIENCE RE
[3]   Transform coding techniques for lossy hyperspectral data compression [J].
Penna, Barbara ;
Tillo, Tammam ;
Magli, Enrico ;
Olmo, Gabriella .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (05) :1408-1421
[4]  
Rucker J., 2005, P IEEE INT GEOSC REM
[5]  
Slyz M, 2005, IEEE DATA COMPR CONF, P427
[6]  
Tang X., 2005, HYPERSPECTRAL DATA C
[7]   Correlation-based band-ordering heuristic for lossless compression of hyperspectral sounder data [J].
Toivanen, P ;
Kubasova, O ;
Mielikainen, J .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2005, 2 (01) :50-54