Mechanical properties and drying shrinkage of alkali-activated seawater coral aggregate concrete

被引:25
|
作者
Zhang, Bai [1 ]
Zhu, Hong [1 ]
Cao, Ruiming [2 ,3 ]
机构
[1] Southeast Univ, Key Lab Concrete & Prestressed Concrete Struct, Minist Educ, Nanjing, Peoples R China
[2] Southeast Univ, Architects & Engineers Co Ltd, Nanjing, Peoples R China
[3] Southeast Univ, Sch Transportat, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
alkali-activated materials (AAMs); coral aggregate concrete (CAC); alkaline dosage; mechanical properties; drying shrinkage; BLAST-FURNACE SLAG; FRP BARS; FRACTURE PARAMETERS; BOND BEHAVIOR; SILICA FUME; FLY-ASH; DURABILITY; MICROSTRUCTURE; PERFORMANCE; PREDICTION;
D O I
10.1080/21650373.2021.1989633
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Alkali-activated materials (AAMs) are identified as environmental-friendly substitutes for ordinary Portland cement (OPC) for lowing greenhouse-gas emissions and achieving efficient waste recycling. In this paper, well-durable AAMs were utilized to prepare the slag-based alkali-activated seawater coral aggregate concrete (AACAC) and three alkaline dosages (Na2O-to-binder ratios of 3, 4, and 6% by weight) were designed to determine their mechanical characteristics and drying shrinkage. The tested results indicated that the failure modes for all coral aggregate concrete (CAC) were characterized by the broken coral aggregates originated from their low strength and high brittleness. As the alkaline concentration increased, the compressive strength (f(cu)), splitting tensile strength (f(ts)), axial compressive strength (f(c)), elastic modulus (E-c), and interfacial bond strength (f(b)) between the new concrete and the old concrete, were gradually enhanced. Additionally, the (f(b)/f(ts)) ratio can be stabilized at about 0.70. Compared with the cement-based CAC, the AACAC achieved higher f(ts), E-c, and f(c) because of the improved interfacial microstructures between the aggregate and the paste matrix after using AAMs. Moreover, the utilization of coral aggregates can lower the drying shrinkage (approximately 14.7%) of conventional alkali-activated concrete (AAC) at the same alkaline content owing to the internal self-curing effect of porous aggregates.
引用
收藏
页码:408 / 417
页数:10
相关论文
共 50 条
  • [1] Design and properties of seawater coral aggregate alkali-activated concrete
    Zhang, Bai
    Zhu, Hong
    Wang, Qiang
    Shah, Kwok Wei
    Wang, Wei
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2022, 11 (03) : 175 - 184
  • [2] Study on fracture properties of alkali-activated slag seawater coral aggregate concrete
    Xu, Weiying
    Yang, Shutong
    Xu, Chengji
    Sun, He
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 223 : 91 - 105
  • [3] Mechanical Properties and Drying Shrinkage of Alkali-Activated Coal Gangue Concrete
    Zhao, Yanbing
    Yang, Caiqian
    Qu, Feng
    Li, Kefeng
    Yang, Jing
    Wu, Zhiren
    SUSTAINABILITY, 2022, 14 (22)
  • [4] Fracture properties of slag-based alkali-activated seawater coral aggregate concrete
    Zhang, Bai
    Zhu, Hong
    Lu, Fei
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2021, 115
  • [5] Bond performance between BFRP bars and alkali-activated seawater coral aggregate concrete
    Zhang, Bai
    Cheng, Yuzhu
    Zhu, Hong
    ENGINEERING STRUCTURES, 2023, 279
  • [6] Effect of Recycled Fine Aggregates on the Mechanical and Drying Shrinkage Properties of Alkali-Activated Recycled Concrete
    Luo, Ling
    Yao, Wu
    Liao, Gang
    MATERIALS, 2024, 17 (09)
  • [7] Mechanical properties of alkali-activated slag lightweight aggregate concrete
    Chen, Pang
    Shi, Zhaoyue
    Cao, Shaojun
    Liu, Ping
    Rong, Xian
    Wang, Lida
    JOURNAL OF CLEANER PRODUCTION, 2022, 359
  • [8] Development of drying shrinkage model for alkali-activated slag concrete
    Ou, Zhihua
    Feng, Ruiping
    Li, Fangtao
    Liu, Guang
    Li, Ning
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 323
  • [9] Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate
    Collins, F
    Sanjayan, JG
    CEMENT AND CONCRETE RESEARCH, 1999, 29 (04) : 607 - 610
  • [10] Normal distribution analysis of fracture parameters of alkali-activated slag seawater column coral aggregate concrete
    Gui, Wanmei
    Hu, Xiaozhi
    Liang, Li
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2020, 110