RATIONAL CURVES ON FIBERED CALABI-YAU MANIFOLDS

被引:0
作者
Diverio, Simone [1 ]
Fontanari, Claudio [2 ]
Martinelli, Diletta [3 ]
机构
[1] Sapienza Univ Roma, Dipartimento Matemat Guido Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[2] Univ Trento, Dipartimento Matemat, Via Sommarive 14, I-38123 Povo, Trento, Italy
[3] Univ Edinburgh, Sch Math, Peter Guthrie Tait Rd, Edinburgh SW7 2AZ, Midlothian, Scotland
来源
DOCUMENTA MATHEMATICA | 2019年 / 24卷
关键词
Elliptic fiber space; Calabi-Yau manifold; fibration; rational curve; rational multi-section; canonical bundle formula; THREEFOLDS; CONJECTURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a smooth projective complex manifold of dimension greater than two endowed with an elliptic fiber space structure and with finite fundamental group always contains a rational curve, provided its canonical bundle is relatively trivial. As an application of this result, we prove that any Calabi-Yau manifold that admits a fibration onto a curve whose general fiber is an abelian variety always contains a rational curve.
引用
收藏
页码:663 / 675
页数:13
相关论文
共 26 条
[1]  
[Anonymous], 1983, Lecture Notes in Math.
[2]  
[Anonymous], 1986, ADV SER MATH PHYS, V1, P145
[3]  
Barth W. P., 2004, CORNPACT COMPLEX SUR, V4
[4]  
Campana F, 2004, ANN I FOURIER, V54, P499, DOI 10.5802/aif.2027
[5]  
Deligne P., 1968, Publ. Math. Inst. Hautes tudes Sci, V35, P107, DOI [DOI 10.1007/BF02698925, 10.1007/BF02698925]
[6]  
Demailly JP, 2001, ICTP LECT NOTES, V6, P1
[7]   NONPERTURBATIVE EFFECTS ON THE STRING WORLD SHEET [J].
DINE, M ;
SEIBERG, N ;
WEN, XG ;
WITTEN, E .
NUCLEAR PHYSICS B, 1986, 278 (04) :769-789
[8]   On a conjecture of Oguiso about rational curves on Calabi-Yau threefolds [J].
Diverio, Simone ;
Ferretti, Andrea .
COMMENTARII MATHEMATICI HELVETICI, 2014, 89 (01) :157-172
[9]   Calabi-Yau threefolds and moduli of Abelian surfaces I [J].
Gross, M ;
Popescu, S .
COMPOSITIO MATHEMATICA, 2001, 127 (02) :169-228
[10]   CALABI-YAU THREEFOLDS WITH RHO-GREATER-THAN-13 [J].
HEATHBROWN, DR ;
WILSON, PMH .
MATHEMATISCHE ANNALEN, 1992, 294 (01) :49-57