Domain Decomposition PN Solutions to the 3D Transport Benchmark over a Range in Parameter Space

被引:0
|
作者
Van Criekingen, S. [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Neutron Phys & Reactor Technol, Karlsruhe, Germany
来源
SNA + MC 2013 - JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO | 2014年
关键词
Domain Decomposition; Generalized Schwarz Splitting; 3D Transport Benchmark; Spherical Harmonics;
D O I
10.1051/snamc/201404101
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The objectives of this contribution are twofold. First, the Domain Decomposition (DD) method used in the parafish parallel transport solver is re-interpreted as a Generalized Schwarz Splitting as defined by Tang [SIAM J Sci Stat Comput, vol. 13 (2), pp. 573-595, 1992]. Second, parafish provides spherical harmonic (i.e., P-N) solutions to the NEA benchmark suite for 3D transport methods and codes over a range in parameter space. To the best of the author's knowledge, these are the first spherical harmonic solutions provided for this demanding benchmark suite. They have been obtained using 512 CPU cores of the JuRoPa machine installed at the Jlich Computing Center (Germany).
引用
收藏
页数:8
相关论文
共 35 条
  • [21] Use of algebraic dual spaces in domain decomposition methods for Darcy flow in 3D domains
    Jain, V.
    Palha, A.
    Gerritsma, M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 404
  • [22] A Parallel Domain Decomposition Method for 3D Unsteady Incompressible Flows at High Reynolds Number
    Chen, Rongliang
    Wu, Yuqi
    Yan, Zhengzheng
    Zhao, Yubo
    Cai, Xiao-Chuan
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 58 (02) : 275 - 289
  • [23] 3D Transient Thermal Solver using Non-conformal Domain Decomposition Approach
    Xie, Jianyong
    Swaminathan, Madhavan
    2012 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2012, : 333 - 340
  • [24] A parallel fully coupled implicit domain decomposition method for numerical simulation of microfluidic mixing in 3D
    Hwang, Feng-Nan
    Cai, Xiao-Chuan
    Cheng, Yu-Lun
    Tsao, Chia-Wen
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (03) : 615 - 629
  • [25] A parallel implementing strategy for full waveform inversion of 3D elastic waves based on domain decomposition
    Qin N.
    Liang H.
    Guo Z.
    Li Z.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2023, 58 (02): : 351 - 357
  • [26] Fast Domain Decomposition Algorithm Using Barycentric Interpolation and Overlapping Subdomains for 3D Multiscale Problems
    Kielian, Nils
    Stiemer, Marcus
    IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2025, 10 : 198 - 208
  • [27] Local and parallel finite element algorithms based on domain decomposition for the 2D/3D Stokes equations with damping
    Zheng, Bo
    Shang, Yueqiang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 103 : 82 - 103
  • [28] A Realistic Multiple Circular Array System for Active Noise Control Over 3D Space
    Sun, Huiyuan
    Abhayapala, Thushara D.
    Samarasinghe, Prasanga N.
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2020, 28 : 3041 - 3052
  • [29] Domain-Decomposition Technique for Efficient Analysis of Rotationally Symmetric Reflector Systems Containing 3D Structures
    Jorgensen, Erik
    Meincke, Peter
    2013 7TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2013, : 1826 - U700
  • [30] An Effective Domain-Decomposition-Based Preconditioner for the FE-BI-MLFMA Method for 3D Scattering Problems
    Yang, Ming-Lin
    Gao, Hong-Wei
    Song, Wei
    Sheng, Xin-Qing
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (04) : 2263 - 2268