Domain Decomposition PN Solutions to the 3D Transport Benchmark over a Range in Parameter Space

被引:0
|
作者
Van Criekingen, S. [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Neutron Phys & Reactor Technol, Karlsruhe, Germany
来源
SNA + MC 2013 - JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO | 2014年
关键词
Domain Decomposition; Generalized Schwarz Splitting; 3D Transport Benchmark; Spherical Harmonics;
D O I
10.1051/snamc/201404101
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The objectives of this contribution are twofold. First, the Domain Decomposition (DD) method used in the parafish parallel transport solver is re-interpreted as a Generalized Schwarz Splitting as defined by Tang [SIAM J Sci Stat Comput, vol. 13 (2), pp. 573-595, 1992]. Second, parafish provides spherical harmonic (i.e., P-N) solutions to the NEA benchmark suite for 3D transport methods and codes over a range in parameter space. To the best of the author's knowledge, these are the first spherical harmonic solutions provided for this demanding benchmark suite. They have been obtained using 512 CPU cores of the JuRoPa machine installed at the Jlich Computing Center (Germany).
引用
收藏
页数:8
相关论文
共 35 条
  • [1] Domain decomposition for 3D electromagnetic modeling
    Zonghou Xiong
    Earth, Planets and Space, 1999, 51 : 1013 - 1018
  • [2] ACTIVE NOISE CONTROL OVER 3D SPACE WITH REMOTE MICROPHONE TECHNIQUE IN THE WAVE DOMAIN
    Sun, Huiyuan
    Zhang, Jihui
    Abhayapala, Thushara D.
    Samarasinghe, Prasanga N.
    2021 IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS (WASPAA), 2021, : 301 - 305
  • [3] Dual Domain Decomposition Method for High-Resolution 3D Simulation of Groundwater Flow and Transport
    Deng, Hao
    Li, Jiaxin
    Huang, Jixian
    Zou, Yanhong
    Liu, Yu
    Chen, Yuxiang
    Zheng, Yang
    Mao, Xiancheng
    WATER, 2024, 16 (13)
  • [4] A domain decomposition method for the 3D shallow water equations
    deGoede, ED
    Tan, KH
    Borsboom, MJA
    Stelling, GS
    EUROSIM '96 - HPCN CHALLENGES IN TELECOMP AND TELECOM: PARALLEL SIMULATION OF COMPLEX SYSTEMS AND LARGE-SCALE APPLICATIONS, 1996, : 429 - 436
  • [5] Parallel domain decomposition applied to 3D poisson equation for gradual HBT
    García-Loureiro, AJ
    Pena, TF
    López-González, JM
    Viñas, LP
    1999 INTERNATIONAL CONFERENCE ON MODELING AND SIMULATION OF MICROSYSTEMS, 1999, : 322 - 325
  • [6] Domain decomposition methods for 3D crack propagation problems using XFEM
    Bakalakos, Serafeim
    Georgioudakis, Manolis
    Papadrakakis, Manolis
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 402
  • [7] 3D domain decomposition method coupling conforming and nonconforming finite elements
    Agouzal, A
    Lamoulie, L
    Thomas, JM
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (04): : 771 - 780
  • [8] A three-scale domain decomposition method for the 3D analysis of debonding in laminates
    Pierre Kerfriden
    O. Allix
    P. Gosselet
    Computational Mechanics, 2009, 44 : 343 - 362
  • [9] Alternating Asymmetric Iterative Algorithm Based on Domain Decomposition for 3D Poisson Problem
    Xu, Qiuyan
    Liu, Zhiyong
    MATHEMATICS, 2020, 8 (02)
  • [10] A 3D domain decomposition approach for the identification of spatially varying elastic material parameters
    Moussawi, Ali
    Lubineau, Gilles
    Xu, Jiangping
    Pan, Bing
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 102 (07) : 1431 - 1448