Parabolic induction in characteristic p

被引:10
作者
Ollivier, Rachel [1 ]
Vigneras, Marie-France [2 ]
机构
[1] Univ British Columbia, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[2] Inst Math Jussieu, UMR 7586, 175 Rue Chevaleret, F-75013 Paris, France
来源
SELECTA MATHEMATICA-NEW SERIES | 2018年 / 24卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
Representations of p-adic groups; Hecke algebras; Parabolic induction; IWAHORI-HECKE ALGEBRA; REPRESENTATIONS MODULO-P; ADIC GROUP; IRREDUCIBLE REPRESENTATIONS; SMOOTH REPRESENTATIONS; FINITE-GROUPS; SATAKE;
D O I
10.1007/s00029-018-0440-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F (resp. F) be a nonarchimedean locally compact field with residue characteristic p (resp. a finite field with characteristic p). For k = F or k = F, let G be a connected reductive group over k and R be a commutative ring. We denote by Rep(G(k)) the category of smooth R-representations of G(k). To a parabolic k-subgroup P = MN of G corresponds the parabolic induction functor Ind(P(k))(G(k)) : Rep(M(k)) -> Rep(G(k)). This functor has a left and a right adjoint. Let U (resp. U) be a pro-p Iwahori (resp. a p-Sylow) subgroup of G(k) compatible with P(k) when k = F (resp. F). Let H-G(k) denote the pro-p Iwahori (resp. unipotent) Hecke algebra of G(k) over R and Mod(H-G(k)) the category of right modules over HG(k). There is a functor Ind(HM(k))(HG(k)) : Mod(H-M(k)) -> Mod(H-G(k)) called parabolic induction for Hecke modules; it has a left and a right adjoint. We prove that the pro-p Iwahori (resp. unipotent) invariant functors commute with the parabolic induction functors, namely that Ind(P(k))(G(k)) and Ind(HM(k))(HG(k)) form a commutative diagram with the U and U boolean AND M(F) (resp. U and Un M(F)) invariant functors. We prove that the pro-p Iwahori (resp. unipotent) invariant functors also commute with the right adjoints of the parabolic induction functors. However, they do not commute with the left adjoints of the parabolic induction functors in general; they do if p is invertible in R. When R is an algebraically closed field of characteristic p, we show that an irreducible admissible R-representation of G(F) is supercuspidal (or equivalently supersingular) if and only if the H-G(F)-module m of its U-invariants admits a supersingular subquotient, if and only if m is supersingular.
引用
收藏
页码:3973 / 4039
页数:67
相关论文
共 67 条
[1]   A CLASSIFICATION OF IRREDUCIBLE ADMISSIBLE MOD p REPRESENTATIONS OF p-ADIC REDUCTIVE GROUPS [J].
Abe, N. ;
Henniart, G. ;
Herzig, F. ;
Vigneras, M. -F. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (02) :495-559
[2]  
Abe N., 2018, AM MATH SOC
[3]  
Abe N, 2016, ARXIV161201312
[4]  
Abe N., 2018, REPRESENT THEORY
[5]   Modulo p parabolic induction of pro-p-Iwahori Hecke algebra [J].
Abe, Noriyuki .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 749 :1-64
[6]   On a classification of irreducible admissible modulo p representations of a p-adic split reductive group [J].
Abe, Noriyuki .
COMPOSITIO MATHEMATICA, 2013, 149 (12) :2139-2168
[7]  
[Anonymous], 1997, I HAUTES ETUDES SCI
[8]   ON THE THEORY OF FROBENIUS EXTENSIONS AND ITS APPLICATION TO LIE-SUPERALGEBRAS [J].
BELL, AD ;
FARNSTEINER, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 335 (01) :407-424
[9]  
Benson DavidJ., 1991, CAMBRIDGE STUDIES AD
[10]  
BERNSTEIN IN, 1977, ANN SCI ECOLE NORM S, V10, P441