REDUCED SPHERICAL POLYGONS

被引:11
作者
Lassak, Marek [1 ]
机构
[1] Univ Sci & Technol, Inst Math & Phys, PL-85789 Bydgoszcz, Poland
关键词
sphere; reduced body; spherically convex body; spherically convex polygon; width; thickness; diameter;
D O I
10.4064/cm138-2-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every hemisphere K supporting a spherically convex body C of the d - dimensional sphere S d we consider the width of C determined by K. By the thickness Delta(C) of C we mean the minimum of the widths of C over all supporting hemispheres K of C. A spherically convex body R subset of S-d is said to be reduced provided Delta(Z) < Delta(R) for every spherically convex body Z subset of R different from R. We characterize reduced spherical polygons on S-2. We show that every reduced spherical polygon is of thickness at most pi/2. We also estimate the diameter of reduced spherical polygons in terms of their thickness. Moreover, a few other properties of reduced spherical polygons are given.
引用
收藏
页码:205 / 216
页数:12
相关论文
共 13 条
[1]   On reduced polytopes and antipodality [J].
Averkov, Gennadiy ;
Martini, Horst .
ADVANCES IN GEOMETRY, 2008, 8 (04) :615-626
[2]  
Danzer L., 1963, P S PURE MATH, V7, P99
[3]  
Dawson R. J. M., 2006, ELECT J COMBIN, V13
[4]  
Gao F., 2003, MATH NOTAE, V41, P159
[5]  
Hadwiger H., 1955, NAGOYA MATH J, V8, P45
[6]  
Heil E., 1978, 453 FACHB MATH TH DA
[7]   REDUCED CONVEX-BODIES IN THE PLANE [J].
LASSAK, M .
ISRAEL JOURNAL OF MATHEMATICS, 1990, 70 (03) :365-379
[8]   Reduced convex bodies in Euclidean space-A survey [J].
Lassak, Marek ;
Martini, Horst .
EXPOSITIONES MATHEMATICAE, 2011, 29 (02) :204-219
[9]   Curves of constant width in the non-euclidean geometry [J].
Leichtweiss, K .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2005, 75 (1) :257-284
[10]  
Martini H, 2004, PUBL MATH-DEBRECEN, V64, P101