Riesz decomposition properties and the lexicographic product of po-groups

被引:2
作者
Dvurecenskij, Anatolij [1 ,2 ]
机构
[1] Slovak Acad Sci, Math Inst, Stefanikova 49, Bratislava 81473, Slovakia
[2] Palacky Univ, Dept Algebra & Geometry, 17 Listopadu 12, Olomouc 77146, Czech Republic
关键词
Po-group; l-Group; Strong unit; Lexicographic product; Unital po-group; Antilattice po-group; Effect algebra; Pseudo effect algebra; Riesz decomposition property; PSEUDOEFFECT ALGEBRAS; PERFECT;
D O I
10.1007/s00500-015-1903-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We establish conditions when a certain type of the Riesz decomposition property (RDP) holds in the lexicographic product of two po-groups. It is well known that the resulting product is an -group if and only if the first one is linearly ordered and the second one is an -group. This can be equivalently studied as po-groups with a special type of the RDP. In the paper we study three different types of RDPs. RDPs of the lexicographic products are important for the study of pseudo effect algebras where infinitesimal elements play an important role both for algebras as well as for the first-order logic of valid but not provable formulas.
引用
收藏
页码:2103 / 2117
页数:15
相关论文
共 23 条
[1]  
Botur M, 2015, REP MATH PHYS TO APP
[2]   Loomis-Sikorski representation of monotone σ-complete effect algebras [J].
Buhagiar, D ;
Chetcuti, E ;
Dvurecenskij, A .
FUZZY SETS AND SYSTEMS, 2006, 157 (05) :683-690
[3]  
Cignoli R, 2000, ALGEBRAIC FOUNDATION
[4]  
Darnel MR, 1995, THEORY OF LATTICE OR
[5]  
Di Nola A., 1994, Studia Logica, V53, P417, DOI 10.1007/BF01057937
[6]   Godel spaces and perfect MV-algebras [J].
Di Nola, Antonio ;
Grigolia, Revaz .
JOURNAL OF APPLIED LOGIC, 2015, 13 (03) :270-284
[7]   Lexicographic MV-algebras and lexicographic states [J].
Diaconescu, Denisa ;
Flaminio, Tommaso ;
Leustean, Ioana .
FUZZY SETS AND SYSTEMS, 2014, 244 :63-85
[8]   Pseudo MV-algebras are intervals in l-groups [J].
Dvurecenskij, A .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 72 :427-445
[9]   Pseudoeffect algebras. II. Group representations [J].
Dvurecenskij, A ;
Vetterlein, T .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (03) :703-726
[10]   Pseudoeffect algebras. I. Basic properties [J].
Dvurecenskij, A ;
Vetterlein, T .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (03) :685-701