A generalization of Hilbert modules

被引:38
作者
Blecher, DP
机构
[1] Department of Mathematics, University of Houston, Houston
基金
美国国家科学基金会;
关键词
D O I
10.1006/jfan.1996.0034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that there is a natural generalization of the notion of a Hilbert C*-module (also called ''Hilbert module,'' ''inner product module,'' ''rigged module,'' and sometimes ''Hermitian module'' in the literature) to nonselfadjoint operator algebras, and we lay down some foundations for this theory, including direct sums, tensor products, change of rings, and index for subalgebras of operator algebras. These modules in general do not give rise to a Morita equivalence (unlike in the C*-algebra case). (C) 1996 Academic Press, Inc.
引用
收藏
页码:365 / 421
页数:57
相关论文
共 61 条
[1]  
Anderson F., 1992, GRADUATE TEXTS MATH, V13
[2]  
ARVESON W, 1972, ACTA MATH-UPPSALA, V128, P271, DOI 10.1007/BF02392166
[3]  
Arveson W. B., 1969, ACTA MATH, V123, P141, DOI 10.1007/BF02392388
[4]  
BASS H, 1962, LECT NOTES
[5]   ON MORITA EQUIVALENCE OF NUCLEAR C STAR-ALGEBRAS [J].
BEER, W .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1982, 26 (03) :249-267
[6]  
Blackadar B., 1986, K THEORY OPERATOR AL, V5, DOI 10.1007/978-1-4613-9572-0
[7]   A CHARACTERIZATION OF OPERATOR-ALGEBRAS [J].
BLECHER, DP ;
RUAN, ZJ ;
SINCLAIR, AM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 89 (01) :188-201
[8]   THE STANDARD DUAL OF AN OPERATOR SPACE [J].
BLECHER, DP .
PACIFIC JOURNAL OF MATHEMATICS, 1992, 153 (01) :15-30
[9]   TENSOR-PRODUCTS OF OPERATOR-SPACES [J].
BLECHER, DP ;
PAULSEN, VI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (02) :262-292
[10]   THE DUAL OF THE HAAGERUP TENSOR PRODUCT [J].
BLECHER, DP ;
SMITH, RR .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1992, 45 :126-144