Irreversible adsorption of latex particles on fibrinogen covered mica

被引:11
作者
Adamczyk, Z. [1 ]
Nattich, M. [1 ]
Wasilewska, M. [1 ]
机构
[1] Polish Acad Sci, Inst Catalysis & Surface Chem, PL-30239 Krakow, Poland
来源
ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY | 2010年 / 16卷 / 4-5期
关键词
Fibrinogen monolayers on mica; Colloid enhancement of protein layers; Adsorption of latex on fibrinogen; Irreversible adsorption of colloid particles; STREAMING POTENTIAL MEASUREMENTS; CONFORMATIONAL-CHANGES; COLLOID PARTICLES; SILICA; KINETICS; POLYELECTROLYTE; ELECTROKINETICS; REFLECTOMETRY; MICROSCOPY; FRAGMENTS;
D O I
10.1007/s10450-010-9225-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Physicochemical properties of bovine plasma fibrinogen (Fb) in electrolyte solutions were characterized. These comprised the diffusion coefficient (hydrodynamic radius), determined by the DLS method, electrophoretic mobility and the isoelectric point. The hydrodynamic radius of Fb was 12 nm for pH < 5. The number of uncompensated (electrokinetic) charges on the protein N (c) was calculated from the electrophoretic mobility data. It was found that for pH < 5.8 the electrokinetic charge was positive, independently of the ionic strength and negative for pH > 5.8. For pH=3.5 the value of N (c) , was 26 for 10(-3) M. Similar electrokinetic measurements were performed for the mica substrate using the streaming potential cell. It was shown that for pH=3.5 and 10(-3) M, the zeta potential of mica remained negative (-50 mV). This promoted an irreversible, electrostatically driven adsorption of Fb, which was confirmed in experiments carried out under diffusion-controlled transport. The surface concentration of Fb on mica was determined directly by AFM counting. By adjusting the time of adsorption, Fb monolayers of desired coverage were produced. Independently, the presence of Fb on mica was determined quantitatively by the colloid enhancement method, in which negatively charged latex particles were used, having the diameter of 800 nm. It was found that for Fb coverage below 0.05 the method was more sensitive than other indirect methods. The experimental data obtained in latex deposition experiments were adequately interpreted in terms of the random site model used previously for polyelectrolytes. It was shown that adsorption sites consisted of a cluster of two Fb molecules. It was concluded that the colloid enhancement method can be successfully used for detecting the presence of proteins at solid substrates and to determine the uniformity of monolayers in the nanoscale.
引用
收藏
页码:259 / 269
页数:11
相关论文
共 41 条
[1]   Polyelectrolyte adsorption layers studied by streaming potential and particle deposition [J].
Adamczyk, Z. ;
Zembala, A. ;
Michna, A. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2006, 303 (02) :353-364
[2]  
Adamczyk Z, 2006, INTERFACE SCI TECHNO, V9, P1
[3]   STRUCTURE AND ORDERING IN LOCALIZED ADSORPTION OF PARTICLES [J].
ADAMCZYK, Z ;
ZEMBALA, M ;
SIWEK, B ;
WARSZYNSKI, P .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1990, 140 (01) :123-137
[4]   Streaming potential studies of colloid, polyelectrolyte and protein deposition [J].
Adamczyk, Z. ;
Sadlej, K. ;
Wajnryb, E. ;
Nattich, M. ;
Ekiel-Jezewska, M. L. ;
Blawzdziewicz, J. .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2010, 153 (1-2) :1-29
[5]   Irreversible adsorption/deposition kinetics: A generalized approach [J].
Adamczyk, Z ;
Senger, B ;
Voegel, JC ;
Schaaf, P .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (06) :3118-3128
[6]  
Adamczyk Z, 1999, B POL ACAD SCI-CHEM, V47, P239
[7]   Kinetics of diffusion-controlled adsorption of colloid particles and proteins [J].
Adamczyk, Z .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2000, 229 (02) :477-489
[8]  
ADAMCZYK Z, 2010, LANGMUIR IN PRESS
[9]   Characterization of poly(ethylene imine) layers on mica by the streaming potential and particle deposition methods [J].
Adamczyk, Zbigniew ;
Michna, Aneta ;
Szaraniec, Magdalena ;
Bratek, Anna ;
Barbasz, Jakub .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 313 (01) :86-96
[10]   Zeta Potential of Mica Covered by Colloid Particles: A Streaming Potential Study [J].
Adamczyk, Zbigniew ;
Zaucha, Maria ;
Zembala, Maria .
LANGMUIR, 2010, 26 (12) :9368-9377