Mechanical Properties of Cellularly Responsive Hydrogels and Their Experimental Determination

被引:377
作者
Kloxin, April M. [1 ,2 ]
Kloxin, Christopher J. [1 ]
Bowman, Christopher N. [1 ]
Anseth, Kristi S. [1 ,2 ]
机构
[1] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[2] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA
关键词
POLY(ETHYLENE GLYCOL) HYDROGELS; PARTICLE-TRACKING MICRORHEOLOGY; CROSS-LINKING POLYMER; 2-POINT MICRORHEOLOGY; LONGCHAIN MOLECULES; ELASTIC PROPERTIES; PEG HYDROGELS; CELL-SHAPE; TISSUE; SUBSTRATE;
D O I
10.1002/adma.200904179
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrogels are increasingly employed as multidimensional cell culture platforms often with a necessity that they respond to or control the cellular environment. Specifically, synthetic hydrogels, such as poly(ethylene glycol) (PEG)-based gels, are frequently utilized for probing the microenvironment's influence on cell function, as the gel properties can be precisely controlled in space and time. Synthetically tunable parameters, such as monomer structure and concentration, facilitate initial gel property control, while incorporation of responsive degradable units enables cell- and/or user-directed degradation. Such responsive gel systems are complex with dynamic changes occurring over multiple time-scales, and cells encapsulated in these synthetic hydrogels often experience and dictate local property changes profoundly different from those in the bulk material. Consequently, advances in bulk and local measurement techniques are needed to monitor property evolution quantatively and understand its effect on cell function. Here, recent progress in cell-responsive PEG hydrogel synthesis and mechanical property characterization is reviewed.
引用
收藏
页码:3484 / 3494
页数:11
相关论文
共 118 条
[1]   The effect of enzymatically degradable poly(ethylene glycol) hydrogels on smooth muscle cell phenotype [J].
Adeloew, Catharina ;
Segura, Tatiana ;
Hubbell, Jeffrey A. ;
Frey, Peter .
BIOMATERIALS, 2008, 29 (03) :314-326
[2]   Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery [J].
Aimetti, Alex A. ;
Machen, Alexandra J. ;
Anseth, Kristi S. .
BIOMATERIALS, 2009, 30 (30) :6048-6054
[3]   Human Neutrophil Elastase Responsive Delivery from Poly(ethylene glycol) Hydrogels [J].
Aimetti, Alex A. ;
Tibbitt, Mark W. ;
Anseth, Kristi S. .
BIOMACROMOLECULES, 2009, 10 (06) :1484-1489
[4]   A magnetic manipulator for studying local rheology and micromechanical properties of biological systems [J].
Amblard, F ;
Yurke, B ;
Pargellis, A ;
Leibler, S .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (03) :818-827
[5]   Extracellular Matrix Stiffness and Architecture Govern Intracellular Rheology in Cancer [J].
Baker, Erin L. ;
Bonnecaze, Roger T. ;
Zamao, Muhammad H. .
BIOPHYSICAL JOURNAL, 2009, 97 (04) :1013-1021
[6]   Passive and active microrheology with optical tweezers [J].
Brau, R. R. ;
Ferrer, J. M. ;
Lee, H. ;
Castro, C. E. ;
Tam, B. K. ;
Tarsa, P. B. ;
Matsudaira, P. ;
Boyce, M. C. ;
Kamm, R. D. ;
Lang, M. J. .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2007, 9 (08) :S103-S112
[7]   Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro [J].
Bryant, SJ ;
Nuttelman, CR ;
Anseth, KS .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2000, 11 (05) :439-457
[8]   Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain [J].
Bryant, SJ ;
Anseth, KS ;
Lee, DA ;
Bader, DL .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2004, 22 (05) :1143-1149
[9]  
Bryant SJ., 2005, SCAFFOLDING TISSUE E, P69
[10]   Fabrication of gradient hydrogels using a microfluidics/photopolymerization process [J].
Burdick, JA ;
Khademhosseini, A ;
Langer, R .
LANGMUIR, 2004, 20 (13) :5153-5156