Interplay of hot electrons from localized and propagating plasmons

被引:70
作者
Chung V. Hoang [1 ,2 ,3 ]
Hayashi, Koki [1 ]
Ito, Yasuo [1 ]
Gorai, Naoki [1 ]
Allison, Giles [1 ]
Shi, Xu [4 ]
Sun, Quan [4 ]
Cheng, Zhenzhou [5 ]
Ueno, Kosei [4 ]
Goda, Keisuke [6 ]
Misawa, Hiroaki [4 ,7 ]
机构
[1] IMRA Japan Co Ltd, Sapporo, Hokkaido 0040015, Japan
[2] Vietnam Acad Sci & Technol, Inst Mat Sci, Hanoi, Vietnam
[3] VNU Univ Engn & Technol, Fac Engn Phys & Nanotechnol, Hanoi, Vietnam
[4] Hokkaido Univ, Res Inst Elect Sci, Sapporo, Hokkaido 0010021, Japan
[5] Univ Tokyo, Dept Chem, Tokyo 1130033, Japan
[6] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[7] Natl Chiao Tung Univ, Dept Appl Chem, Hsinchu 30010, Taiwan
关键词
ENHANCED RAMAN-SCATTERING; PHOTOCURRENT GENERATION; METAL NANOPARTICLES; GOLD NANOPARTICLES; SURFACE-PLASMONS; OPTICAL ANTENNAS; NANOSTRUCTURES; FILMS; PHOTODETECTION; PHOTOEMISSION;
D O I
10.1038/s41467-017-00815-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plasmon-induced hot-electron generation has recently received considerable interest and has been studied to develop novel applications in optoelectronics, photovoltaics and green chemistry. Such hot electrons are typically generated from either localized plasmons in metal nanoparticles or propagating plasmons in patterned metal nanostructures. Here we simultaneously generate these heterogeneous plasmon-induced hot electrons and exploit their cooperative interplay in a single metal-semiconductor device to demonstrate, as an example, wavelength-controlled polarity-switchable photoconductivity. Specifically, the dual-plasmon device produces a net photocurrent whose polarity is determined by the balance in population and directionality between the hot electrons from localized and propagating plasmons. The current responsivity and polarity-switching wavelength of the device can be varied over the entire visible spectrum by tailoring the hot-electron interplay in various ways. This phenomenon may provide flexibility to manipulate the electrical output from light-matter interaction and offer opportunities for biosensors, long-distance communications, and photoconversion applications.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays [J].
Adato, Ronen ;
Yanik, Ahmet A. ;
Amsden, Jason J. ;
Kaplan, David L. ;
Omenetto, Fiorenzo G. ;
Hong, Mi K. ;
Erramilli, Shyamsunder ;
Altug, Hatice .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (46) :19227-19232
[2]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[3]   Single-molecule optomechanics in "picocavities" [J].
Benz, Felix ;
Schmidt, Mikolaj K. ;
Dreismann, Alexander ;
Chikkaraddy, Rohit ;
Zhang, Yao ;
Demetriadou, Angela ;
Carnegie, Cloudy ;
Ohadi, Hamid ;
de Nijs, Bart ;
Esteban, Ruben ;
Aizpurua, Javier ;
Baumberg, Jeremy J. .
SCIENCE, 2016, 354 (6313) :726-729
[4]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/NNANO.2014.311, 10.1038/nnano.2014.311]
[5]   Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules [J].
Bui, Tung S. ;
Dao, Thang D. ;
Dang, Luu H. ;
Vu, Lam D. ;
Ohi, Akihiko ;
Nabatame, Toshihide ;
Lee, YoungPak ;
Nagao, Tadaaki ;
Hoang, Chung V. .
SCIENTIFIC REPORTS, 2016, 6
[6]   Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna [J].
Chalabi, Hamidreza ;
Schoen, David ;
Brongersma, Mark L. .
NANO LETTERS, 2014, 14 (03) :1374-1380
[7]   Near-field-induced tunability of surface plasmon polaritons in composite metallic nanostructures [J].
Christ, A. ;
Leveque, G. ;
Martin, O. J. F. ;
Zentgraf, T. ;
Kuhl, J. ;
Bauer, C. ;
Giessen, H. ;
Tikhodeev, S. G. .
JOURNAL OF MICROSCOPY, 2008, 229 (02) :344-353
[8]   Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO2 Nanostructures [J].
Fang, Yurui ;
Jiao, Yang ;
Xiong, Kunli ;
Ogier, Robin ;
Yang, Zhong-Jian ;
Gao, Shiwu ;
Dahlin, Andreas B. ;
Kall, Mikael .
NANO LETTERS, 2015, 15 (06) :4059-4065
[9]   Graphene-Antenna Sandwich Photodetector [J].
Fang, Zheyu ;
Liu, Zheng ;
Wang, Yumin ;
Ajayan, Pulickel M. ;
Nordlander, Peter ;
Halas, Naomi J. .
NANO LETTERS, 2012, 12 (07) :3808-3813
[10]  
Giugni A, 2013, NAT NANOTECHNOL, V8, P845, DOI [10.1038/NNANO.2013.207, 10.1038/nnano.2013.207]