Computer-aided diagnosis in rheumatic diseases using ultrasound: an overview

被引:12
作者
Gutierrez-Martinez, Josefina [1 ]
Pineda, Carlos [2 ]
Sandoval, Hugo [3 ]
Bernal-Gonzalez, Araceli [2 ]
机构
[1] Inst Nacl Rehabil Luis Guillermo Ibarra Ibarra, Div Med Engn Res, Calzada Mexico Xochimilco 289, Mexico City 14389, DF, Mexico
[2] Inst Nacl Rehabil Luis Guillermo Ibarra Ibarra, Div Musculoskeletal & Rheumat Disorders, Calzada Mexico Xochimilco 289, Mexico City 14389, DF, Mexico
[3] Inst Nacl Rehabil Luis Guillermo Ibarra Ibarra, Sociomed Res Unit, Calzada Mexico Xochimilco 289, Mexico City 14389, DF, Mexico
关键词
Artificial intelligence; Computer-assisted diagnosis; Expert systems; Machine learning; Rheumatology; X-RAY; SYSTEM; OSTEOARTHRITIS; ARTHRITIS; IMAGES; CLASSIFICATION; VALIDATION; CRITERIA;
D O I
10.1007/s10067-019-04791-z
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Clinical evaluation of rheumatic and musculoskeletal diseases through images is a challenge for the beginner rheumatologist since image diagnosis is an expert task with a long learning curve. The aim of this work was to present a narrative review on the main ultrasound computer-aided diagnosis systems that may help clinicians thanks to the progress made in the application of artificial intelligence techniques. We performed a literature review searching for original articles in seven repositories, from 1970 to 2019, and identified 11 main methods currently used in ultrasound computer-aided diagnosis systems. Also, we found that rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, and idiopathic inflammatory myopathies are the four musculoskeletal and rheumatic diseases most studied that use these innovative systems, with an overall accuracy of >75%.
引用
收藏
页码:993 / 1005
页数:13
相关论文
共 66 条
[1]   ON THE APPLICABILITY OF DIAGNOSTIC-CRITERIA FOR THE DIAGNOSIS OF RHEUMATOID-ARTHRITIS IN AN EXPERT-SYSTEM [J].
ADLASSNIG, KP ;
LEITICH, H ;
KOLARZ, G .
EXPERT SYSTEMS WITH APPLICATIONS, 1993, 6 (04) :441-448
[2]   Wavelet-based computationally-efficient computer-aided characterization of liver steatosis using conventional B-mode ultrasound images [J].
Amin, Manar N. ;
Rushdi, Muhammad A. ;
Marzaban, Raghda N. ;
Yosry, Ayman ;
Kim, Kang ;
Mahmoud, Ahmed M. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 52 :84-96
[3]   Neural networks for automatic scoring of arthritis disease activity on ultrasound images [J].
Andersen, Jakob Kristian Holm ;
Pedersen, Jannik Skyttegaard ;
Laursen, Martin Sundahl ;
Holtz, Kathrine ;
Grauslund, Jakob ;
Savarimuthu, Thiusius Rajeeth ;
Just, Soren Andreas .
RMD OPEN, 2019, 5 (01)
[4]   Predicting Early Symptomatic Osteoarthritis in the Human Knee Using Machine Learning Classification of Magnetic Resonance Images From the Osteoarthritis Initiative [J].
Ashinsky, Beth G. ;
Bouhrara, Mustapha ;
Coletta, Christopher E. ;
Lehallier, Benoit ;
Urish, Kenneth L. ;
Lin, Ping-Chang ;
Goldberg, Ilya G. ;
Spencer, Richard G. .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2017, 35 (10) :2243-2250
[5]   Computer-assisted diagnosis of pediatric rheumatic diseases [J].
Athreya, BH ;
Cheh, ML ;
Kingsland, LC .
PEDIATRICS, 1998, 102 (04)
[6]   RENOIR - AN EXPERT-SYSTEM USING FUZZY-LOGIC FOR RHEUMATOLOGY DIAGNOSIS [J].
BELMONTESERRANO, M ;
SIERRA, C ;
DEMANTARAS, RL .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 1994, 9 (11) :985-1000
[7]   Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods [J].
Burlina, Philippe ;
Billings, Seth ;
Joshi, Neil ;
Albayda, Jemima .
PLOS ONE, 2017, 12 (08)
[8]   Rheumatology 4.0: big data, wearables and diagnosis by computer [J].
Burmester, Gerd R. .
ANNALS OF THE RHEUMATIC DISEASES, 2018, 77 (07) :963-965
[9]   Biomarkers of erosive arthritis in systemic lupus erythematosus: Application of machine learning models [J].
Ceccarelli, Fulvia ;
Sciandrone, Marco ;
Perricone, Carlo ;
Galvan, Giulio ;
Cipriano, Enrica ;
Galligari, Alessandro ;
Levato, Tommaso ;
Colasanti, Tania ;
Massaro, Laura ;
Natalucci, Francesco ;
Spinelli, Francesca Romana ;
Alessandri, Cristiano ;
Valesini, Guido ;
Conti, Fabrizio .
PLOS ONE, 2018, 13 (12)
[10]   COMPUTER-AIDED DIAGNOSIS OF DIFFERENT ROTATOR CUFF LESIONS USING SHOULDER MUSCULOSKELETAL ULTRASOUND [J].
Chang, Ruey-Feng ;
Lee, Chung-Chien ;
Lo, Chung-Ming .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2016, 42 (09) :2315-2322