Inequality for Voiculescu's free entropy in terms of Brown measure

被引:6
作者
Sniady, P [1 ]
机构
[1] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
关键词
D O I
10.1155/S1073792803201070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:51 / 64
页数:14
相关论文
共 16 条
[1]  
BROWN L. G., 1986, GEOMETRIC METHODS OP, V123, P1
[2]   Invariant subspaces of Voiculescu's circular operator [J].
Dykema, K ;
Haagerup, U .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (04) :693-741
[3]  
DYKEMA K, 2001, DECOMPOSABILITY VOIC
[4]   DETERMINANT THEORY IN FINITE FACTORS [J].
FUGLEDE, B ;
KADISON, RV .
ANNALS OF MATHEMATICS, 1952, 55 (03) :520-530
[5]   Applications of free entropy to finite von Neumann algebras [J].
Ge, LM .
AMERICAN JOURNAL OF MATHEMATICS, 1997, 119 (02) :467-485
[6]   Applications of free entropy to finite von Neumann algebras, II [J].
Ge, LM .
ANNALS OF MATHEMATICS, 1998, 147 (01) :143-157
[7]   A LIMIT-THEOREM FOR THE NORM OF RANDOM MATRICES [J].
GEMAN, S .
ANNALS OF PROBABILITY, 1980, 8 (02) :252-261
[8]  
HAAGERUP U., 2001, SPECTRAL DECOMPOSITI
[9]  
HADWIN D, 1998, OPERATOR ALGEBRAS OP, P111
[10]  
Mehta M. L., 1991, Random Matrices, V2nd