Exhaustion numbers of subsets of Abelian groups

被引:0
|
作者
Chin, AYM [1 ]
机构
[1] Univ Malaya, Fac Sci, Inst Math Sci, Kuala Lumpur 50603, Malaysia
关键词
exhaustion number; Abelian group; arithmetic progression;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group written additively and S a non-empty subset of G. We say that S is e-exhaustive if G = S+...+S (e times). The minimal integer e > 0, if it exists, such that S is e-exhaustive, is called the exhaustion number of the set S and is denoted by e(S). In this paper we completely determine the exhaustion numbers of subsets of Abelian groups which are in arithmetic progression. The exhaustion numbers of various subsets of Abelian groups which are not in arithmetic progression are also determined.
引用
收藏
页码:65 / 76
页数:12
相关论文
共 50 条
  • [41] Homomorphic images of Abelian groups
    Grinshpon S.Ya.
    Yeltsova T.A.
    Journal of Mathematical Sciences, 2008, 154 (3) : 290 - 294
  • [42] Decompositions of decidable abelian groups
    Bazhenov, Nikolay
    Goncharov, Sergey
    Melnikov, Alexander
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2020, 30 (01) : 49 - 90
  • [43] RESIDUAL PROPERTIES OF ABELIAN GROUPS
    Azarov, Dmitrii Nikolaevich
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2015, (35): : 5 - 11
  • [44] Complemented topologies on abelian groups
    Zelenyuk, EG
    Protasov, IV
    SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (03) : 465 - 472
  • [45] Quadratic automorphisms of abelian groups
    Zhurtov A.Kh.
    Algebra and Logic, 2000, 39 (3) : 184 - 188
  • [46] A Characterization of Metahomomorphisms on Abelian Groups
    丁龙云
    顾沛
    Northeastern Mathematical Journal, 2006, (04) : 383 - 386
  • [47] On the Bassian property for Abelian groups
    Chekhlov, Andrey R.
    Danchev, Peter, V
    Goldsmith, Brendan
    ARCHIV DER MATHEMATIK, 2021, 117 (06) : 593 - 600
  • [48] Recipotent matrices and abelian groups
    Butkote, R.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (04)
  • [49] On a generalization of Abelian sequential groups
    Gabriyelyan, Saak S.
    FUNDAMENTA MATHEMATICAE, 2013, 221 (02) : 95 - 127
  • [50] Asymmetric decompositions of Abelian groups
    Banach, TO
    Protasov, IV
    MATHEMATICAL NOTES, 1999, 66 (1-2) : 8 - 15