The eta invariant, manifolds of positive scalar curvature, and equivariant bordism

被引:0
|
作者
Gilkey, PB [1 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
来源
GEOMETRY, TOPOLOGY AND PHYSICS | 1997年
关键词
Gromov-Lawson conjecture; positive scalar curvature;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a closed manifold with Abelian fundamental group of dimension m greater than or equal to 5. Assume the universal cover of M is spin. We use the eta invariant and equivariant spin bordism to study when M admits a metric of positive scalar curvature.
引用
收藏
页码:157 / 171
页数:15
相关论文
共 50 条
  • [41] Taming 3-manifolds using scalar curvature
    Stanley Chang
    Shmuel Weinberger
    Guoliang Yu
    Geometriae Dedicata, 2010, 148 : 3 - 14
  • [42] On positive scalar curvature on S2
    Min Ji
    Calculus of Variations and Partial Differential Equations, 2004, 19 : 165 - 182
  • [43] Positive scalar curvature on foliations: The noncompact case
    Su, Guangxiang
    Zhang, Weiping
    ADVANCES IN MATHEMATICS, 2022, 410
  • [44] Kähler Surfaces of Positive Scalar Curvature
    Myong-Hee Sung
    Annals of Global Analysis and Geometry, 1997, 15 : 509 - 518
  • [45] BOUNDED RICCI CURVATURE AND POSITIVE SCALAR CURVATURE UNDER RICCI FLOW
    Kroncke, Klaus
    Marxen, Tobias
    Vertman, Boris
    PACIFIC JOURNAL OF MATHEMATICS, 2023, 324 (02) : 295 - 331
  • [46] FOLIATED MANIFOLDS AND CLOSED MANIFOLDS OF NON-POSITIVE SECTIONAL CURVATURE
    An, Guolin
    Su, Guangxiang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (02) : 813 - 828
  • [47] Singular spaces, groupoids and metrics of positive scalar curvature
    Piazza, Paolo
    Zenobi, Vito Felice
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 137 : 87 - 123
  • [48] CODIMENSION TWO INDEX OBSTRUCTIONS TO POSITIVE SCALAR CURVATURE
    Hanke, Bernhard
    Pape, Daniel
    Schick, Thomas
    ANNALES DE L INSTITUT FOURIER, 2015, 65 (06) : 2681 - 2710
  • [49] Positive scalar curvature and Poincare duality for proper actions
    Guo, Hao
    Mathai, Varghese
    Wang, Hang
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2019, 13 (04) : 1381 - 1433
  • [50] Positive scalar curvature on simply connected spin pseudomanifolds
    Botvinnik, Boris
    Piazza, Paolo
    Rosenberg, Jonathan
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2023, 15 (02) : 413 - 443